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I.S. process. By virtue of such a "vectorization". the propagation of the
contravariant and covariant metric tensors is shown to fit perfectly the variance

* covariance propagation law and even to establish a weight propagation law. The
opportunity to obtain variance-covariances and weights as a coherent part of the
geometrical development provides the motivation for using tensor structure in the
analysis of various L.S. methods and their properties.

In principle, an isomorphism between adjustments and geometry is rooted in the
notion that a consistent model relationship restricts a general vector to a "model
surface" (here a hyperplane). The mechanism is provided by the L.S. criterion,
which projects an "observational vector" dx lying in an n-dimensional observational
space orthogonally onto this u'-dimensional model surface. The projected vector is
attributed the dual notation dx'=du'. The observational space is spanned by n
orthonormal vectors R, j ... , v, ... , while the model surface embedded in it is
spanned by u' orthonormal vectors 9, j, ... In the rank-deficient problems, where
the rank of the design matrix is u' and the rank deficit is u"=u-u' the model
surface is also embedded in a u-dimensional parametric space spanned by u
orthonormal vectors R, J ..... t ..... and Is thus an intersection of the
observational and the parametric spaces. The observational-space contravariant
components of dx' represent the adjusted observations, and the parametric-space
contravariant components of du' represent the adjusted parameters. These two kinds
of components of the same geometrical object are related through the design matrix.

The isomorphic geometrical setup reveals that all the adjustment matrices, i.e.,
the design matrix, the variance-covariance matrices (of observations, adjusted

- ,observations, residuals, and parameters), and the corresponding weight matrices,
can be expressed as a product of two constituent matrices each. This outcome is
further qualified: (a) All constituent matrices are formed in terms of orthonormal
vectors, the elementary geometrical objects; (b) These vectors are the same in
either matrix of the constituent pair. only the type of their components may
differ; and (c) The set . J, .... spanning the model surface Is common to all
constituent matrices except those pertaining to the residuals.

The geometrical development yields a general L.S. resolution, where the solution
vector du' and its variance covarlance matrix a' are non-unique. This resolution

-. is analyzed in three distinct formulations giving identical results. Two of these
formiilations utilize the matrix of minimal constraints, the first generating
augmented observation equations and the second generating augmented normal
equations. The third formulation analyzes the parametric-space components of the
orthonormal vectors, showing that the properties of the resolution depend entirely
(n i"u' free elements grouped in the matrix AL". A completely arbitrary AL"
prodiuces the general resolution with non unique du' and a'. A specific data
d cti 'i (it' lt I l stI i'S t i on tij AL," yields the unique minimum norm so lut ion di , but it

nio ,111 ii i t' a'. F I li I I y, I f Al," -0, bot.h du' and a' are un ique. It) this case dII'
Is the minimum norm solution as above and a' is its variance-covariance matrix with
the minimum trace. It can be concluded that the minimum trace criterion is
;tipe'rior to any other. Even if some of them produced tiniquP du' and a' the norm
of (Iii' wotild riot he a minimum, or the trace of a' would not be a minimum, or both.

Other topics related to geometry with tensor structure are addressed as well.
Au ol.of- iltim 'urn ishiiil,, tlit' pseiudoinvt'rst' of a positive emi definitt' matrix, which
,il, I 1 tisef li for its straightforward geometrical interpretation as well as for
its ,omitittti,ndil efficietncy, is developed as a by product of this analysis. The
Chol'ski algorithm for positive-definite as well as positive semi definite matrices
Is i tf-rpreted in terms (if orthonormal vector componeits. \ Another item shows how
t ti tensor structure developed herein could be useful in #pplications unrelated to
idjustmert caltulus, such as the transformation of multiple integrals.
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1. INTRODUCTION

This study represents a continuation of efforts aimed at developing the

least-squares theory and results in a purely geometrical manner. It is based on

[Blaha, 1984], abbreviated here as [B]. One of the important limitations listed

in this reference is the full column rank of the design matrix of the parametric

adjustment. As its title suggests, the present analysis is intended to extend

the scope of [B] by bridging this limitation. Undoubtedly, most or all of the

others can similarly be bridged, one by one.

In both [B] and the present study, the various finite-dimensional spaces

are Riemannian, where the metric (or line element) Is expressible by means of a

symmetric covariant tensor of second order. These spaces are considered only

within an infinitesimal neighborhood of the point called P, contained by all of

them and corresponding to the point of Taylor expansion in the parent least-

squares (L.S.) problem. In accordance with most adjustment applications, where

all except the first (linear) terms in the expansion are ignored, the expanded

L.S. problem as treated here is linear, whether its original version was linear

or not. The same statement applies, of course, also to [B], which expressly

avoided nonlinear adjustment. The above spaces can thus be regarded as

Eucledian (or flat), which, by definition, can be described over a finite region

in Cartesian coordinates.

In view of the foregoing, the term "surface" used in [B] means actually

"hyperplane", since it is not limited to two dimensions and since It is

Intrinsically a flat space. However, references to surface will be retained for

convenience, allowing for an easy transfer of familiar terminology, e.g. from

[Hotine, 1969], concerned with two--dimensional surfaces embedded in a three-

dimensional space. This terminology should present no confusion since we know

that such surfaces will not be two-dimensional In general; as a special case,

the model "surface" could even be one-dimensional, reducing here to a straight

line through P, of which only a small segment in the neighborhood of P would be

of interest.

From the philosophical standpoint, the geometrical analysis of the rank

deficient parametric adjustment typifies the notion that could be dubbed an
"orthonormalization of the least squares universe". In this sense, the

fundamental building blocks consist of orthonormal vectors emanating from the

0: ,, %2. *%



point P. These vectors are considered as fixed entities, and their subsets span

the spaces and surfaces linked to the L.S. setup. Their components are

separated into contravariant (denoted by an upper index) and covariant (denoted

by a lower index) in accordance with the principles of tensor analysis, and are

regarded as point functions at P.

From the L.S. setup to the desired results including the variance-

covariance and the weight matrices, the standard adjustment quantities can be

represented by first- and second-order tensors. It is thus possible to express

them in terms of the components of the above orthonormal vectors, which is

indeed the main feature of both the previous and the current studies. This

procedure, called in [B] "vectorization" of tensors, allows for an easy and

clearcut geometrical interpretation of the L.S. process. As a by-product, it

circumvents the need to verify, at various stages of the development, whether

certain "objects" are tensors or not, which under different circumstances would

be done by checking whether the tensor transformation law applies.

The vectorization of the metric tensor (in mathematical literature also

_ .~ called the covariant metric tensor or the fundamental metric tensor) and the

associated metric tensor (also called the contravariant metric tensor or the

conjugate metric tensor) is especially relevant in view of a complete treatment

of adjustment problems. By virtue of the vectorization, the "propagation" of

these tensors was shown in [8] to fit perfectly the variance-covariance

propagation law and even to establish a weight propagation law. This indicates

that the vectorization is a tool whose potential is readily exploited in the

tensorial environment. Without the use of tensor structure, with its

contravariant and covariant versions of the metric tensor, the side-by-side

derivation of these propagation laws would have been more difficult if not

impossible. The opportunity to obtain the propagated variance-covariances and

weights as a coherent part of the geometrical devclopment constitutes a strong

motivation for using tensor structure in the description, treatment, and

analysis of various L.S. methods and their properties.

. ., ..
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4

2. GEONETRICAL SETUP

2.1 General Background

In pursuing the avenue of relating, for example, associated metric tensors

to variance-covariance matrices, one soon encounters rank-deficient symmetric

contravariant tensors which behave as the "regular" associated metric tensors at

P, but only when applied to tensors restricted to a given surface embedded in
...

some original space. In other words, they can be regarded as associated metric

tensors in spaces of lower dimensions than the original space, but expressed in

the full dimensional form of the original space. They could be called

"restrictive associated metric tensors", "defective associated metric tensors",

etc. However, for the reason explained below they will be called "necessary

associated metric tensors". A similar description applies also when relating

metric tensors to weight matrices. In this case, the pertinent rank-deficient

covarlant tensors will be called "necessary metric tensors".

Suppose that an (original) n-dimensional space is spanned by n orthonormal

vectors denoted as 2, J, ... . ... belonging to the point P, and that a

u'-dimensional surface of interest embedded in this space is spanned by u' of

these vectors, namely 9, J, ... The associated metric tensor is then given as

g = krIs +jrs r ... + rs +

while the necessary associated metric tensor is

-4 grs =ars jr s
'g = +jj 4 ....

where the indices r and s, identifying the space components, range between 1 and

n. Both of these tensors raise the index of dx' representing the covariant
s

components of an arbitrary vector dx' lying in the surface. However, the use of
rs

g is sufficient, but not necessary. The tensor of the lowest rank that can
rs

accomplish this Is g'r, both necessary and sufficient, hence the attribute

"necessary".

In the present context, the n-dimensional space spanned by 9, J,.....

Lj .. is called "observational space", the u'-dimensional surface spanned by Q.IJ, is called "model surface", and a further n"dimensional surface spanned

by u, ... Is called "error surface". The error surface Is an orthocomplement of

3
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the model surface in the observational space (all considered at P). The

necessary associated metric tensor for the error surface Is written as

g,,rs r V s +

so that

rs rs ,rs
g =g +g (1)

This relationship indicates a close analogy to

dxr dx 'r + dxr, (2)

where the vector dx in the observational space Is decomposed into two orthogonal

vectors, dx' lying In the model surface and dx" lying In the error surface. The

lengths (tensor invariants) of these three vectors are respectively ds, ds', and

ds". All of the above tensor equations could, of course, be written with lower

indices Instead, In which case the term "associated" would be dropped.

Similar to [B], the set of contravariant components dx is considered to

represent observations in an adjustment model after linearization. It is

decomposed into dx r and dxr where the first set belongs to a vector

dx~l lying In the model surface and the second set completes the system of
r dr requations dx (x +dx (The restriction of dx to the model surface

( ) (2 (1)can be thought of as the geometrical equivalent of a consistent model

relationship between the observables and the parameters.) In general, there
rexists an infinite number of solutions for dx However, if the quadratic

form dx dx r I.e. the square of the length of the vectordx
s d(2 )gsr (2)' ( 2)'

should be a minimum, dx(2 ) must be orthogonal to the model surface and lies,

therefore, In the error surface. Consequently, the vectors dx( J and dx(2)

become unique, such that dx dx' and dx dx" Furthermore, the quadratic
(l) (2)

form

2 s rds" = dx" gs dx" = minimum (3)

depicts the standard L.S. criterion written in adjustment notations as

V TPV- IT Pg=mlnimum, where Vs-1 represents the residuals (corresponding here

to -dx" r) and P. not to be confused with the point P, is the weight matrix of

observations (corresponding to gsr). The latter is defined as P=C , where C is

a given variance-covariance matrix of observations (corresponding to g rS).

4
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In expanding the present terminology, dx is called "observational vector",

dx' Is called "model vector", and dx" is called "error vector", dx' oeing an

orthogonal projection of dx on the model surface and dx" being an orthogonal

projection of dx on the error surface. The L.S. criterion is thus seen in the

geometrical context as minimizing the length of the error vector in the

observational space metricized by the weight matrix of observations. The

foregoing discussion is general, applicable to the full-rank and the rank-

deficient adjustments alike. The next section highlights the geometrical

distinction between the two kinds of adjustments.

2.2 Universal Space and its Partition

The vectors dx, dx', and dx" as introduced above are illustrated

schematically in Fig. 1. The model vector dx' is also denoted as du' depending

on the coordinate system used to express its components. The geometry of these

vectors resembles that of Fig. I in [B], except that the observational space in

the present figure is two-dimensional, n=2 (instead of three-dimensional), and

the model surface is one-dimensional, u'=1 (instead of two-dimensional). The

error surface, in [B] called "second surface", Is one-dimensional in both

illustrations, n"=l.

In considering rank-deficient adjustment problems, we define the model

surface as embedded not only in the observational space, but also in a new,

u-dimensional "parametric space". Compared to its full-rank counterpart, the

dimensionality of this geometrical setup Is increased by u", where u" designates

the dimensions of a new subspace called "extension surface". The latter is an

orthocomplement of the model surface in the parametric space, and is defined to

be orthogonal to the observational space. Accordingly, the complete geometrical

configuration must be presented in an all-encompassing -dimensional "universal

space", where N=n+u"=n"+u, with u=u'+u". In the Illustration of Fig. I, the

dimensions not listed above are u"=l. u-2, and N=3.

If the extension surface were absent, i.e., if u"=O, the situation of

Fig. I would correspond to a full-rank L.S. setup. The universal space would be

identical to the observational space and the parametric space would be identical

to the model surface, hence N=n and u=u'. The model vector du' lying in the u'-

dimensional model surface would then be expressed In model-surface coordinates,

5
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observational space

:error
surface

;X1 I 
X"Q

".' " /P dx', ,du' I,.Q

i'.".-,model surface

"- .

- .isurface
_]I '" Iparametric space

I j., ..

S".Fig. I

-- Symbolic representation, in the N-dimensional universal space (here N = 3),

'%-" of th~e observational vector dx and other related vectors in the qeometrical setup

; ',-,"corresponding to the rank-deficient parametric adjustment
1; ,-4-
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V i.e.. It would have u' components of either kind (contravariant and covartant).

On the other hand, the rank-deficient L.S. setup corresponds to u">O and thus

u>u', the model surface being a subspace of the parametric space as stated in

the preceding paragraph. In the geometrical representation, the rank-deficient

L.S. setup is distinguished from its full-rank counterpart by the fact that the

model vector du' lying in the u'-dimensional model surface is expressed in

parametric-space coordinates rather than in model-surface coordinates, i.e., it

has u>u' components of either kind.

The universal-space configuration corresponding to the rank-deficient L.S.

setup is elucidated via orthonormal vectors emanating from P. In particular,

* the universal space is spanned by N orthonormal vectors v ...... , J .t.... t,

giving rise to its partition as follows:

n" f u' = n -dimensional u' + u" = u -dimensional

*, observational space parametric space

LO 2 J t (4)-'S

n" -dimensional u' -dimensional u" -dimensional

error surface I model surface extension surface

The error surface is confirmed to be an orthocomplement of the mode] surface in

the observational space, while the extension surface, spanned by the u"

orthonormal vectors t ..... is confirmed to be an orthocomplement of the model

surface in the parametric space. The extension surface could further be viewed

as an orthocomplement of the observational space in the universal space, etc.

- Moreover, the model surface is seen to be an intersection of the observational

*. and the parametric spaces.

" The partition of the universal space in (4) indicates that more than one

coordinate system may become involved at various stages of the development. In

addition to a coordinate system associated with the universal space itself, each

of the following spaces and surfaces are endowed with a coordinate system

symbolized by braces:
'I

7
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observational space ..... (x r), r=l,2,....n; (5a)

parametric space ........ (u*), a=l,2,...,u; (5b)

Lmodel surface ........... (uL), L=l,2,...,u'; (5c)

V A
extension surface ........ (w A=1,2,....u". (5d)

The systems (5a,bd) will serve in the next chapter to resolve the rank-

4-: deficient L.S. setup. The systems (5c,d) will be used in the next section as a

stepping stone toward expressing a "rank--deficient design tensor" in terms of

partial derivatives. According to an earlier statement, the full-rank L.S.

setup would be characterized by an identity between the systems (5b) and (5c),

and by the absence of the system (5d).

We now present, in Table 1, tensor quantities expressed in the coordinate

systems (5a,b,d). They include first- and second-order contravariant tensors,

and second-order mixed tensors, all representing point functions at P. One can

imagine first- and second-order covariant tensors added to the table following

the pattern of Its first two parts with all the indices lowered. Great many

tensor relations can be derived with the aid of this table, such as equations

(1) and (2) which can be read directly, or more complex expressions which can be

formed through tensor contractions. Thus, Table 1 will be relevant in much of

the geometrical development in this study.

The arrangement of spaces and surfaces in Table i conforms to their

representation in (4). Due to the vectorized formulation of all the tensors,

the latter are automatically classified in two respects, namely, according to

the space or surface in which they exist as geometrical objects, and according

to the coordinate system used to express their individual components. In

considering the first classification, one can write the identity dx'sdu', for

example, stating that the vectors dx' and du' are one and the same geometrical

U object, represented by "a" units along the vector Q, "b" units along the vector

ift. J, etc. With regard to the second classification, the component sets dx' r and

du' a are given a fundamentally different adjustment interpretation from one

6P~e. another. With both sets referring to a linearized model, the former represents

ihe adjusted observations and the latter represents the adjusted parameters.

%8
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observational space parametric space

error surface model surface extension surface

dxr = q vr  + aIr + b Jr +

=+ bJ +

dx r =a Ir + b ir +

dx.r = q P r

du a  a Ia + a tadu = aS + bJ + + zt +

du ' a =a ia + ba +

du"a = z t a  +

A Adw = z t +

rs r s + + + r S +

g,rS r s jj
g' = 5r + rs +

,,rs r ag L'LIJ +

a5 ato + ia + 4 tato +

a= aa a to+ a 0 +

a ,,a/9 = tat j3 +

kAfl = tato +

Ar I r, + Jr a +a a a

I Qr r ra
- a t atA+

A AAA  = +-AA
Qa = t~t
a at

Table 1

First- and second-order tensors In the partitioned universal space



2.3 Rank-Deficient Design Tensor

In this section, the tensor Ar of Table 1, called the rank-deficient
a

design tensor, will be developed in terms of partial derivatives. This tensor

will thus be shown as structurally similar to its counterpart in [B], which

reflected the actual formation of the design matrix in the full-rank context.

Indeed, the design matrix is constructed, in adjustment calculus, through first-

order partial derivatives of the observables with respect to the parameters

whether it is full-rank or rank-deficient. Showing that the design tensor

follows the same pattern further supports the analogy between the adjustment

theory and geometry. Moreover, this knowledge paves the way for the treatment

*, of nonlinear (and non-linearized) adjustment models containing higher-order

derivatives of the observables with respect to the parameters.

The initial step in the current development makes use of the coordinate

systems (5c,d). Merged together, these systems serve to define an interim
(overbarred) coordinate system for the parametric space, (ua )=(uL.w). An

important property of such an arrangement !s that the interim system Is normal,

in the sense that the last u" components, contravariant and covariant, of

vectors lying in the model surface are zero, as are the first u' components of

vectors lying in the extension surface. It is thus a higher-dimensional

analogue of the normal coordinate systems in three dimensions as described in

Chapter 15 of [Hotine, 1969].

The above generalized statement will now be proved in detail. In analogy

,,4 to the N-surfaces of [Hotlne, 1969], where any such (two dimensional) surface is

characterized by a constant value of the third spatial coordinate (N),

a u' dimensional surface embedded in a u dimensional space, where u=u'u", is

- .-/now characterized by u" constant coordinates. In particular, the u-dimensional

space is the parametric space, the u" coordinates held constant are w , and the

u' dimensional surrce is the model surface with the (variable) coordinates uL.

-a
Since the latter are also the first u' of the space coordinates u , any

displacement vector (du') on the surface expressed by the surface contravariante. . , 
I, I ,

- components du' has du' also as the first u' space contravariant components,

the last u" such components being zero. This relationship is symbolized by

~rn ii'a Ldu'(du' ,o). Applied to the orthonormal vectors 9, J..... it yields

( (1L 0) -(0 0) . . (6a)

10
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Since t Ia=O, t j a= ... represent a nonsingular system of u'

equations, the u' unknowns tL' L=4,2....u' are unique, all equal to zero.

This Is true for all u" orthonormal vectors t, ... spanning the extension

surface. However, little could be said about the covariant components I
a

Ja, ... if the last u" space coordinates were not at the same time the

extension-surface coordinates. But since wA have this property by construction,

in analogy to the preceding paragraph we first deduce that

,1. = (O , t (6b)I a (ot)...... (b

where the extension-surface contravarlant components of the vectors t, ... are

also their last u" space contravariant components. Now 2 t a= 0,
represent a nonsingular system of u" equations, whereby the u" unknowns IA'

A=I,2.....u" are unique, all equal to zero. This is true for all u' orthonormal

vectors C, j, ... spanning the model surface.

We next contract the partially known I with ea, J , from (6a)
aand obtain a nonsingular system of u' equations In u' unknowns L

........ ......u' However, in considering the model surface, the same equations

hold true also without the overbar, Since this argument again applies to all of

2, J. it follows that

a7a

where 2L' JL' ... represent the model-surface components. Finally, upon

contractitg the partially known ta with ta from (6b), we obtain a

nonsingular system of u" equations in u" unknowns, eventually resulting in

t (0.tA) (7b)

where tA .... represent the extension surface components. The outcome (6a)-(1b)

is possible only because the two groups of coordinates forming the interim

system are surface coordinates in their own right, and because the two surfaces

*are orthocomplements of each other in the underlying parametric space.

* % To complete the discussion concerned with the interim coordinate system, we

note that the associated metric tensor for the parametric space Is

,,

!1

9 O aR0 a

Ir 
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or

LI' AO

ga9 (al, kA). (8a)

where a I'm and kA D are the associated metric tensors for the model surface and

for the extension surface, respectively. This follows from the standard

relations

l.M L M I. M
a t I +JJ +...

AD A 1
kAO tat +

generalized from two to any dimensions. The symbolism in (8a) indicates that in

matrix notations, a and kA D would form the diagonal submatrices, while the

off diagonal submatrices would be zero as one of the basic characteristics of a

normal system. In the same way, but with all the indices lowered, the metricd
tensor for the parametric space can be written as

goa (aMLkOA) (8b)

In considering that the model surface Is embedded in the observational

space, we can express each of the xr observational-space coordinates describing
L

this surface as some function of the model-surface coordinates u , namely

-r r uLx = x (u r l,2. n; L1,2. u'

The ordinary rule of differentiation for this system of equations yields the

following linear relations between the observational space components dx 'r and

the model surface components du' of the vector dx'-du' lying in the model

surface:

dx' r _ (axr/auL )du' L  (9a)

If this formula, relating the space and the surface components of such vectors,

is in turn applied to R, j ..... it follows that

r I,.- r r j

3Ixrdul" AL r a + . . (9b)

where use has been made of +... 6  Equations (9a,b) appear inM M
d similar form in [8), and represent a higher dimensional analogue of the

formulas found in [Hotine, 1969], applicable to a two dimensional surface

embedded in a three dimensional space.

a



The vectorized formulation of 8xr /u L seen above In based on the fact that

the model surface (with coordinates u L ) In embedded in the observational space

(with coordinates xr ). On the other hand, the extension surface (with

coordinates w A ) has no dimension In common with the observational space, hence

" xr /wAO. When Joined together, these two sets of partial derivdtives yield

(dxr'r,ul..axr/awA) Ir(II,O) , (,LJ ,O) + ..

But in view of the interim system, the left hand side above can be written In a

compact form as ax ru a . while the components within the parentheses on the

right hand side are J . ... by (7a). This relation can thus beaa

transcribed in tensor notations as

)I a r ri ~a 4~u 1a Ja . .. (10)

That (10) Is a tensor equation valid in conjunction with any parametric-

space coordinates can be confirmed through the transformation formulas

a u

where the coordinates u belonjg to the general system (5b). These relations are

substituted in (10), the latter Is contracted by au a/uT, use is made of

( u 3u a (d o 1 3 olo/3uT arid, finally, the index T Is substituted
r

for by a The result, where the Interim system Is no longer needed, reads

r a r r rr4X I u =A a II(, j J (11

Equation (11) represents the complete description of the rank deficient design

tensor, whose full rank counterpart played a central role in [H] Although this

refere' e di'played the full rank design tensor in the form (11). in the present

notations It would he properly represented by (9b) In considering that the

model surface is also embedded In the parametric space, we could introduce a

relation similar to (9b), where the symbol x would be replaced by u and all the

indices r would be replaced by a Equations (9b) arid (11) togeth,r with this

new relation would then confirm, through tensor contractions, the validity of

the chain rule 'ux (3x . 'k a ( 'ua/3 u

As their, structure reveals, the partial derivatives forming the design

tensor in (i1) transform the contravariant components of vectors lying in the

model surfa(e from the parametrir spa(e c(iord inate system (ua) t o the
r

observational space coordinate syste m (x rhis property. fundamental 1(i thr,

S-.
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treatment of t rank-deficient adjustment model via an Isomorphic geometrical

setup, Is utilizel in the form

,dx'r Ardu 'a (12)

where the notations du' and dx' designate the same vector as pointed out

V. earlier. This equation was already implied by Table 1, where the design tensor

was defined in anticipation of the result (11). As a matter of interest, we

note that a relation similar to (12) could be written with du replacing du',

where du is a vector from the parametric space such that du a=du'a +du 'a as

suggested by Table 1. This stems from the fact that the components du "a of a
r

vector lying in the extension surface yield zero when contracted with Ar .

ra
In matrix notations, the rank deficient design tensor Ar is written as A,

a
the familiar design matrix. Following the conventions of (B] for second-order

tersors, the first and tne second indices refer to rows and columns,
r

respectively, in the case of a mixed tensor such as A , the contravariant

index is considered as its first and the cuvariant index as its second. By

virti, (if (11), th, disign matrix can be decomposed into a product of two

matrices as follows:

[xrdua  - A = F (13a)
(nxu) (nxu') (u'xu)

where

r jr
F [ [ [ J .. I .* [ a]f J ... ] , (13b,c)

,I whore [RJ etc. , represent column vectors. The matrix F is rectangular, of

dimensions (nxu') and the full column rank u', and the matrix l*T is rectangular

Of dimensIons (u'xu) and the full row rank u'. In the case of (9b), the number

of columns iri the latter matrix would reduce to u' making it regular, i.e.,

square and nonsingular, and resulting in the full rank design matrix particular

t [H! Although both F and I.' consldered at the present have the full (column

fi row) rank individually, their product In (13a) is rank deficient, the rank

(1#.f,, ifricy being ti ii' u" The design matrix A of dimensions (nu) and rank ti'

where nu characterizes the rank deficient parametric adjustment We note

• that if ii u'. tht- model surface would coincide with the observational spac-e and

ri. S adjustment would take place

oil
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Similar to the full-rank case, the advantages of the geometrical approach

to the analysis of the rank-deficient design matrix are readily apparent:

1) The design matrix is decomposed into the product of two constituent

V matrices;

2) The latter are written in terms of orthonormal vectors, the elementary

geometrical entities; and

3) These vectors are the same for both constituent matrices, only the type of

their components differs.

The decomposition of the rank-deficient design matrix A offers geometrical

insight that cannot be gathered from algebraic considerations usually based on

the column space of A in its original form, not on spaces associated with the

more elementary matrices seen above.

2.4 Propagation of Contravariant and Covariant Metric Tensors

We have seen that the u'-dimensional model surface, spanned by u'

orthonormal vectors 3, J ...... is embedded In the n-dimensional observational

space, spanned by n orthonormal vectors 2, J, ... , , ... The model surface is

also embedded in the u-dimensional parametric space, spanned by u orthonormal

vectors , J ...... t .... The rank deficiency is rooted in the fact that the

vectors lying In the model surface, Including 2, J. ... themselves, are

expressed by u parametric-space components (u>u') rather than by u' model-
Isurface components as in the full-rank setup of (B].

The above reference established a perfect correspondence between the

4propagation of associated metric tensors and the variance-covariance propagation

law, and between the propagation of metric tensors and the weight propagation

law. For the most part, however, this isomorphism was proven in conjunction

with vectors lying in the model surface and expressed through the model-surface

components. The scope of the proof will now be extended by showing that the

same correspondence can be established if the parametric-space components are
used instead. Similar to [131, below we list relationships between vector

uomponents, and next to them (separated by dots) formulate the corresponding

15
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relationships between contravariant or covariant metric tensors. Any of these

relationships can be written at once with the aid of Table 1.

In particular, this table (including Its extensions to the covariant

components) yields

du' a= Qa dx' r= Qa dxr......ao. Q ars = Qa g rs Q (14a,b)
r r r r s

du =A dx' = A dx a' A' Ar A5sgsrA r (14c,d)b = 0 s .... aa Ogsr a 0 s a

Equations (14ad) depict what could be termed the situation n-u', indicating

that components in n dimensions are transformed into components in u'

dimensions. Similarly, we deduce

Ax r a r duag Araiss r 0dx' =adu' a a .... . a A , (15a,b)

dxs = Q du = Q du. a = a a  (15c,d)

s .. gr s Qs r 8 0a r '1cd

Equations (15a--d) depict the situation called u'-n. The (associated) metric

tensors attributed a prime are the "necessary" tensors as described earlier.

Table I shows that the Q-tensor Is related to the A-tensor through

.a ag .s'Qr = a A gs (15ul
r sr

where the a- and/or g-tensors could be replaced by their primed counterparts.

We present an additional case of Interest, called the situation u'-m, which

is conceptually quite similar to the situation u'-.n reflected in (15a-d). It is

hased on an a-dimensional "functional space", which is yet another space

containing the model surface, hence m>u'. This space could be thought of as

embedded in the observational space, identical to it, or containing it,

corresponding to m<n, m~-n, or m>n, respectively. Much like the observational

space, the functional space intersects the parametric space in the model

surface, and has no dimension in common with the extension surface. We could

thus imagine it as replacing temporarily the observational space, in which case

all the tensors in Table I having r and/or s as indices would be attributed the

symb(il and th' lower case Roman letters themselves would be replaced by

Another kind of indices whose range would extend from I to m (instead of I to

n) Fxcept for these changes, the basic relations (15a d) could be rewritten as

they stand, and the same applies for the connecting equation (15e). One could

S "..16
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even retrace the steps (9a)-(11) and represent the new A-tensor in terms

of partial derivatives by rewriting (11) with the same notational changes.

Clearly, the rank of the A- and Q-tensors would be u' by construction, the same

as the rank of their counterparts in (15a-e).

If only the first a of the m functional-space vector components were of

any relevance, the computation of the corresponding (associated) metric tensor
* would likewise be limited to its first a xm components. If, similarly, only

0 1 4u' functional-space components of the A- and/or Q-tensors were known, one

could imagine their range extended through m>u' to ensure the validity of the

relationships described in the previous paragraph. The actual components would

subsequently be computed only to within the fist al for the desired vector and

* to within the first m Xm1 for the corresponding (associated) metric tensor,

i.e., the parts imagined for the sake of the theory would be disregarded. We

can thus conclude that whether the number of functional-space components in the

A- and/or Q--tensors is larger than u' or not, the resulting vector components

and the corresponding (associated) metric tensor components follow the pattern

of (15a d).

In order to highlight the isomorphism between the propagation of

contravariant or covarlant metric tensors in the geometrical context and the

propagation of variance -covariance or weight matrices in the adjustment context,

we transcribe (14a)-(15d) in matrix notations. In so doing, we adopt the

"traditional Identification" of [BI, whereby associated metric tensors

correspond to variance-covariance matrices and metric tensors correspond to

weight matrices. Due to its adjustment appeal, this identification was

preferred in (B to the "new identification" with reversed correspondences,

although both identifications were shown to lead to identical results. In

concentrating on the variance-covarlance matrices first, we transcribe (14ab)
'.. and (15ab) as

du' = Qdx' = Qdx ..... a' = QgQT = QgQT , (34'ab)

" dx' = Adu' = Adu ..... g' = Aa'AT AaAT (15'a,b)
"'-

The connection between Q and A is provided by

. - aA Tg* (15'e)
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which follows from (15e), and where the matrices a and/or g* could be attributed

a prime.

As can be gathered from these relations, all of the first- and second-order

contravariant or mixed tensors keep their symbols also in matrix notations,

except that the indices are dropped. This simplifies the notational conventions

used in [B], where a new set of symbols was introduced in matrix notations in

order to conform more closely to adjustment notations. No confusion should

arise from a dual role of the symbol dx, for example, which in one context
.4

r
designates a geometrical object associated with the component set dx , and in

the other expresses the set dxr as a column vector. In (14'a,b) and (15'ab),

the variance-covariance matrices corresponding to the (column) vectors dx, dx',

y du, and du' are g, g', a, and a', respectively. These equations express the

familiar variance-covariance propagation law of adjustment calculus, valid

whether or not any of the matrices are rank-deficient. The case described above

in conjunction with the functional space would be Included In (15'a,b), except

that dx', A, and g' would be attributed the symbol . It would correspond to

the variance-covariance propagation applied to linear functions of du'. In

retrospect, this fact provided the motivation for the term "functional space".

According to the discussion that followed (15e), the matrix A can be

.- written as

T

which is the functional-space version of (13a). As a matter of interest, we

also present this matrix in the form

A RA , R FFTg* ,

where R has the dimensions (mxn) and the rank u'. The second of the above

formulas has been obtained from both versions of (13a) together with the

identity F Tg*F-I. but in the present context it is not needed. Although the

situation u'-m is illustrated sufficiently well by equations (15'a,b) in their

functional-space version, we can substitute A=RA In the latter and wriLe

d x ' R d x' . . .... g' R g 'R 
T ,

18



where use has been made of equations (15'ab) in their original version. This

formulation further highlights the isomorphism between the associated metric

tensors and the variance-covariance matrices.

The first and second-order covariant tensors keep their symbols in matrix

notations as well (with the indices dropped), but are attributed * to be

-i distinguished from their contravariant counterparts. The relations (14c,d) and

(15c,d) are thus transcribed as

du*' = ATdx * ' = ATdx* ..... a*, = ATg*'A = A Tg*A , (14'c,d)

T T T T
dx*' = Q du*' = Q du* ..... g*' = Q a*'Q = Q a*Q. (15'cd)

The weight matrices corresponding to the adjustment vectors dx, dx', du, and du'

are g*, g*', a*. and a*', respectively. In (14'cd) and (15'c,d), the weight

matrices are related to the covarlant version of the pertinent vectors through

a structure resembling (14'a,b) and (15'a,b) and characterizing the weight

propagation law.

Equations (15'c,d) with attributed to dx*', Q, and g*' reflect the

functional-space context. Equation (15'e) is valid here in the forma--Ti*

where the matrices a and/or g* could again be attributed a prime. In

paralleling the development of the previous paragraph, we could show that

Q Q , S = FTs " .

where S has the dimensions (nxm) and the rank u'. Finally, in utilizing both

versions of (15'c,d) in conjunction with the first formula above, we obtain

dx*' = STdx* . = sTg* 's

which further confirms the pattern characterizing the weight propagation law.

19



3. UNIVERSAL-SPACE FORMULATION

3.1 Appeal of the Universal Space

The rank-deficient parametric adjustment differs from most practical

adjustments in one important aspect, the rank deficiency of the design matrix A.

In tensor notations, the rank--deficient L.S. setup is represented by

dxr = Ar du' + dx''r, (16)a

where the first term on the right-hand side Is equal to dx'r In accordance with

(12). Equation (16) closely resembles the situation depicted In [81 in all

. respects but the rank deficiency of the design tensor A . In familiar
=" a

adjustment notations, (16) would be transcribed as

L =AX - V

where L, X, and V are the vectors of constant terms, parametric corrections, and
b_o bresiduals, respectively. The vector L is formed as L L . where L contains

observations and L contains values of the observables consistent with an

initial set of parameters. As can be gathered from Table 1, the geometry

corresponding to a rank-deficient model yields the relations equivalent to

singular normal equations in adjustment calculus:

a' du' a du' ; (17a)

s r s r
a =Ag A du Ag dx , (17b,c)
a gsr a ~ sr

where dxr, Ar and g are given. Although all tensors in (17a-c) except du 'a
a sr

are knewn, the latter cannot be computed from (17a) without further

stipulations, due to the singularity of a a the necessary metric tensor.

a
Just as du' represents the parametric corrections in tensor notations, the

necessary associated metric tensor a' corresponds to the variance-covariance

matrix of parameters. As Table I suggests, both these quantities can be

expressed in theory with the aid of the associated metric tensor of the

parametric space, a

du' a aa du, - a' du' (18a)

ao ar 6P ao ar 6a a a a a -a a a , (18b)
1-6 r6
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where the second equality In (18b) is the consequence of a" =a Ta" a6 . The
tensor a can be obtained from

a ap = 6 C (19)
A= tr 7* 19

provided the metric tensor a^$a is known.

Under the same assumption of known a p, the tensors dx ' r and g' rs are given

by (15ab), namely

dx' = Ar du' , (20a)

g rs = A ra4A = AralapAs (20b)
a, 0 aas

A Parallel to (18b), Table 1 yields the tensor g' as
ar

g;r = g p g ,, (21)

sr spsqwhich follows also from (15d) with (15e). The tensors dx' r, grs and gsr

correspond to the adjusted observations in a linearized model, their variance-

covariance matrix, and their weight matrix, respectively. As has been stated in

the previous chapter, the pertinent functional-space contravariant tensors would

be treated in complete analogy to dx'r and g' rs from (20ab), except that dx'r
rs adrg , A would be attributed the symbol . On the other hand, one cannot

N* compute g' in a functional-space version of (21) because the metric tensor in
sr

the functional space is unknown.

The foregoing represents a simple and plausible resolution of the rank-

deficient model, hinging only on the availability of the metric tensor a~a.

Unfortunately, this model offers no tensor relation containing a0a, and no

indication of how the latter could be obtained. But it is clear that if the
.. isomorphic geometrical setup could be "enlarged" into one where the parametric

space constituted a proper model surface, the metric tensor for such a surface

could be expressed following the simple approach of [B]. One Is thus motivated

to turn to the universal space In the role of an enlarged observational space,

guided by the realization that the parametric space can indeed be considered as

a new model surface embedded In the enlarged observational space.

P- .,. "#
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3.2 Basic Universal-Space Setup

In pursuing the idea suggested in the previous section, we present a

geometrical situation called "modified", where the model surface is extended to

coincide with the parametric space. The latter is embedded in the universal

*" space by construction. The modified surface, endowed with the coordinate system

. (u ). a=l,2 . u, is spanned by u orthonormal vectors k, j, ... t, ... And the

. universal space, endowed with the coordinate system {XR), R=,2.,N, is

spanned by N=u+n" orthonormal vectors e, j ..... t, P......... Suppose

1% momentarily that the following three tensors are known:

dXR :aRR + b JR + . + ztR + + qu R + .... (22a)

A ax R/au a = + j R . + t Rt + (22b)
a a a .

RS R S RS tRS R S
g a + j j + .. t + ... V + (22c)

This case would then represent the situation discussed in (8], If one overlooks

the conceptually unimportant addition of t, ... to the original set of u' model-

surface base vectors 1. J, ...

A full-rank L.S. setup now corresponds to

dXR=dX + dX ''R, (23a)

R R a
dX' A du (23b)

where dX' and du are Lhe same geometrical object expressed in different

coordinate systems, represented by "a" units along the vector Q., "b" units along

the vector j "z" units along the vector t. ... On the other hand, dX' is

represented by "q" units along the vector v, ... Similar to [B], the relation

(A S AR )du A SgsdX (24)

where the tensor In parentheses is the metric tensor a of the modified model

surface, Is equivalent to (nonslngular) normal equations.
-4.

The metric tensor gs needed In (24) can be computed from the associated

metric tensor g Similarly, aa - can be computed from asap giving rise to the

"soution du a a du where

22
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dua  a a+ r

a b ja  + .... + ta  t9 +...

which already appeared in Table 1. The analytical form of the covarlant tensors

du 0 and aPa taking part in (24) would be written In analogy to the above, with

subscripts replacing the superscripts. Paralleling the demonstration in [B],

the standard L.S. criterion is reflected by

1,.dS gsdR 2 (5
dX-'g = q + ... :minimum (25)

SR

3.3 First Stipulation

The case presented above is of little practical use because none of the
quatiie dR R RS

quantities dX , AR aand g Is part of an actual geometrical setup. But upon

using two stipulations, such a system can be deveoped Into one featuring

quantities that are either known from the rank-deficient model or can be chosen

essentially arbitrarily. The first stipulation affects vectors' configuration

by restricting dX to the original (n-dimensional) observational space, i.e., by

enforcing z= ... =0. This means that the orthonormal vectors t, ... no longer

play any role In describing dX, dX', or du. Since the vector dX' and its

S-.equivalent, du, are now restricted to the original (u'-dimensional) model

surface, it is more convenient to replace the notation du by du' and write

dX' -du'

Consistent with the first stipulation, (22a) becomes

dXR = a R + b .. q R (26a)

For the sake of completeness, we also list

R R RdX' at + bj + (... {26b)

R R (26c)
dX11 qL + (6

The vector diC Is expressed as in Table 1. With regard to the geometrical

representation, equations (26a-c) and Table I indicate that the vectors dX,

dX'-du', and dX" are the same objects as dx, dx'-du', and dx", respectively.

Thus, In considering Fig. 1, the vector denoted dx could be described by the

symbols dX, dx: the vector denoted dx', du' could be described by the symbols

23
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dX', dx', du'; and the vector denoted dx" could be described by the symbols

dX", dx".

The first stipulation has not changed anything on tensors in (22b,c). And

although It has altered the geometry of dX and dX', it has not affected the form

of (23a) as is readily apparent from (26a-c). Equations (23b) and (24) also

remdin the same, except that the notation du' now replaces du. With this

'I change, equations (23a,b) are recapitulated for future reference as

dXR dX R dXR (27a)

dX 'R ARdu '( (27b)

In the same vein, (24) is recapitulated in the form

a
duPa du' N (28a)

S R S Ra Ag R A du ASgsRdX . (28b.c)

3.4 Second Stipulation

The second stipulation pertains to the choice of the universal space

coordinate system, and, as such, cannot be Included in Fig. I or a similar

geoetricdl ilitraton. This coordinate system is defined by

R r A (9(XR ) (x ,w (29)

n (A
where (x ) and (w ) represent coordinate systems in their own right. The latter

aire depicted in (5a) and (5d), and belong to the observational space and the

extension surface, respectively. Since the observational space and the

extension surface are orthocomplements of each other in the universal space, it

follows in perfect analogy to the interim coordinate system of Chapter 2 that

the universal space coordinate system is normal. In drawing on this analogy, we

can state that the last u" universal-space components, contravariant and

covariant, of vectors lying in the observational space are zero. as are the

first n components of vectors lying in the extension surface. The remaining

universal space components are identical to their counterparts formed in the

respective subspares. These properties are used extensively in the next three

S"-paragraphs.

! % %
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The universal-space components of the orthonormal vectors lying in the

observational space are

9 R £ .0) r R (jr 0) V R (Vr 0) (30a)

I R ( r'O) JR 0r' . . . . . R = (Vr'O) (30b)

while the components of the orthonormal vectors lying in the extension surface

are

tR - (Ot ) (30c)

t (0 tA ) A ... (30d)

With (30a-d). the unknown tensors of the universal-space setup can easily be

separated into those given as a part of the original rank deficient model, and

those that are unknown but can be chosen at will (subject to some general

restrictions). For example, the components in (26a c) are seen to be

R- r H
R (d r , )d

dXR ",(d xr , dx' (dx' r 0) dX"R  ('Ix' .0) , (31a.bc)

.P.'. which could also he written In the covariant version. The entire set dXR is now

rknown because the set dx represents the known components of the observational

vector.

If we apply equations (30a,c) to (22b). we obtain

A r -A
a (A, Q), (32)

where both tensors on the right hand side appeared in Table 1. If the same

equations are further applied to (22c), it follows that

: RS grs kA0? (33)

where both tensors on the right hand side also appeared In Table 1. Equation

(33) can be related to the normal system described by (8a) and the text that

followed. Similar to (8b), we also have

; SR = (sr'k OA)(4

Equations (32)-(34) contain tensors which are known from the rank deficient
r rs

model, namely A a g , and g sr' as well as tensors which are as yet unknown,
A ADlnamely Q , k , and k We riot ice that with (31c) and (34) the quadrat Ic

form (25) becomes

25



dxS g q ... minimum (35)

which corresponds to the standard L.S. criterion In the original formulation

(full rank as well as rank-deficient). This confirms that the basic premise of

the geometrical setup Is kept Intact by the universal-space approach.

,.. Finally, using (31a c) and (32), we can rewrite (27a.b) as

rj d r 0)A A~ua r
(dx ,0) (A Q du (dx" ,0) (36)

a a

Similarly, using (31a), (32), and (34) in equations (28a c), we obtain

aa, A s d: k  (37e)

a aa a a = = srA aa ' A- (37b.c~d)

srdi' Ag gsdX (37e1

The above relations, consistent with Table 1. represent normal equations in the

universal space approach. As their notations indicate, the necessary metric

teonsors a and a"e pertain respectively to the model surface and to the

extension srface. The tensors a' a and du' are known from the rank

deficient formulation of normal equations, and are given explicitly in (17bc),

while the tensor a" is as yet unknown.

3.5 General Form of the Universal-Space Resolution

The foregoing development has Illustrated that although the notion of

MIomail coordinates plays a substantial role in the derivation of tensor

e(ialioris suited to our needs, the coordinates themselves are neither needed nor

- known. Indeed, if tensor equations are established iii one coordinate system,

they ,itr, valid in any coordinates. As a fundamental feature of this chapter,

such equations, formulated In the universal space endowed with the normal

coordinate system (XRl, allow us to transfer the desired tensors from the rank-

deFiient context to the familiar full -rank context. This advantage is best

reflected by comparing equations (17a) and (37a). where the singulai tensor
V.

'i in thiE' former is replaced by the nonsingular tensor a in the latter.

a l ap p
The formulation of the basic quantities du' and a' then proceeds as in (18a)

ind ( 18tW resp r-t ively. And the formulation of dx '  g , g, and the
8sr

remaining quantities of interest proceeds as outlined in (20a) -(21) and the text

26
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that followed We have thus witnessed how the universal space approach

facilitates the resolut ion of the rank deficient model conceptual ly, through

tensor equations. In the next step, we address the task of choosing the tensors

*.--m as yet unknown in order to resolve this model numerically as well

Equations (37b-d) show that a is obtained from a by !he addition of

an essentially arbitrary tensor a" The choice of the elements of aOa is
Smade through k and QA

rQ A The tensor kOA must be positive definite
(smmtrc) a a teAo A(symme t r I c) . but ot-herwIse -an be completely arbitrary. The tensor Q must

rhave the full rank in A, and, when joined to A must form a full rank tensor
a

in Ot, hut (therwse (an also be completely arbitrary. As the process leading

from (25) to C. ) ,tt,,sts, the choice of these two tensors has no bearing on t h.

r . , tii or ion

Although the rank deficient setup is now solved In general, the numerical

outcome for the basic tensors du'O and a' Is non unique, due to the

arbitrariness in eia propagated into a The nature of this arbitrariness

acould be related to the coordinate system (u } and its variations, hut the

present study, concerned with tensor relations and tensor components, has no

need to link the latter to any coordinates explicitly. We observe. however,

that the tnsors dx', g , and g; from (20ab) and (21) are unique.
er

A similar statement can ie made with respect to the functional space version of

-, (20a.b). whereas such a version is Inconsequential for (21) due to the uniknown

metri( tensor g The uniqueness property is rooted in the fact that the
%sra

components expressed In terms of (u ) are eliminated by tensor contractions
5-.%%

A a 0
We note that if the tensor Q were given, the outcome for du' and a

a
would also be uniJqie, regardless or k This stems from the fact that

-Aa

and from similar identities for the parametric-space components of the remaininr{

orthonormal vectors lyiyg I n the model surf ace, J . The. first jd(it-Tity

offers u' ind(pendenit relations for e a 1.2, . in, arid the .(.oid iderit iiy
a Qa

provides additionil it' Independen t relat ions The component sets e .a

are thus expressible through a' and Q , with k playing no role at alI.
% a a OA plAn oroea l
Implied in this demonstration Is the requirement that (a' Q ) must have

1 . the full rank In a which is satisfied ,duie to the abov,, condlition for
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Iti principle. with only a ' and du' known, the outcome for a" a
SA ,

and a' is affected by both tensors k UA and Q a, the outcome for du and
a t3 A dr rs

a is ,tff e ted by Qa alone. and the outcome for dx ' r , g' etc, discussed

in the previous paragraph, is unique. affected by neither of the two tensors

We rneo summauize the key formulas from this chapter, transcribJng them Jn

matrix notations according to the simple convention introduced earlier (the

inditi-s are dropped and the symbols representing covariant tensors are

i tr ii buted ) We begin with the universal space setup (36), which now reads

dx A dx
di •(38)

0 Q 0

wtt. r v tt,' fii st iatrix on the i ght hand side has the full column rank u. Since

(I Is the smallest possible number of rows which, when augmenting A. can raise

i . , nk ro u, the seocoId equa t Jon In 138) represents what is ref erred to in

14J l1i tIttment i terat ure as minimal constrdints, Q being the minimal onstraint

a matrix In pract ice, this Mdtrix Is often supplied or chosen beforehand It is

kirrert ly regarded as arhitrary, provided it fulfills the conditions

r.tnk (Q) u" rank U (39a.b)

J'.iriy, (39t) tould not hold true without (34a) Although the necessary

(,!,(Ii t i pi L 1a) need not be listed separately, it can serve in a first instance

s( u tit ny of 1 The rank condition 139b) ()u(l equivalently be written) with

.. r'pla, inng A

The universal space approach treats (38) sts a full rank adjustment model

with the weight matrix diag.(g*.k). The latter Is composed of the diagonal

suibjatTjris g* and k*. while the off diagonal submatrices are zero. The symbols

k :' <nr k* denote weight matrices In their own right, the first belonging to the

(ii;oer vd t ionl] space and the second be] ongi rig to the ext ens ion surf-ac- The

positive definite (symmetric) matrix g* is the weight matrix of observ,ttions
I

,bfifled s wher' g is a -in variance covariance matrix of

,)bservat io n s On the other hand, the symmetric matrix k* Is arbitrary, sulbjet
ruly tit th,, r)onuit iorn that it must be posit lv definite The geometrical

,S1,IPrit oini ,thove have indicated that although k* affects a*", a*, a. and a",

I m mat ix has iti hear ir. on the det erm i nat ion of dii and a' I ii adid i t " I ci
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dx', etc ). This is consistent with the statement on page 17 of (Pope.

19731. that "minimally constrained solutions do not depend on E associated with

the minimal constraint", where L Is our (k*) 1 k.

In forming normal equations from (38), one obtains formulas paralleling

(37d e)

d* dU, du*' (40a)

'.* a* + a*", a*' = A TgA a" Q Tk*Q (40b,cd)

du* ' g*dx (40e)

Here the quantities known from the rank-deficient L.S. setup are A (the design

matrix). g (the weight matrix of observations), and dx (the vector of

observations in a linearized model), which give rise to a*' (the singular matrix

of normal equations) and du*' (the rlght-hand side of normal equations).

According to (18a.b). du' and its variance covarlance matrix a' are computed

from

% du' adu*' adu*' (41a)

a, ad*' a a aa*"a (41b)

where, in view of (19).

d (a*) (42)

The second equality In (41b) uses the fact that a"=aa*"a. The second equalities

it) both ij N4iab) can serve for verification purposes.

With regard to the vector dx containing the adjusted observations in a

I l hOer ized model, and to Its vat lanct. covarian(ce matrix g' from (20a,b) we

t r ilrl",; r I O w

X Adu' (43a)

AAA T Aa A T  (43h)

rhe iet ond equality in (43h) (an again serve for verifications If needed, t he

we ight matrY ix V* asso jated with dx' can be transcribed from (21) as

I'd S *(44)

%.-

X-"



Although the matrix a*" in (40d) and thus also a*, a, and a" are non-unique due

to admissible variations in Q and k*, and although the matrix a' as well as

th, vector du' are nn unique due to admissible variations in Q alone, the

q- ,,n il k., ,Ix', g', and g*' above are unique. Equations (43a,b) could also be

used in conjunction with linear functions of du', in which case A, dx', and g

would be attributed the symbol -. The vector dx' and its variarnce-covariance

matrix g' would then be unique as well. On the other hand, the weight matrix

,g*' ('ould not be computed In analogy to (44) because g* is unknown. Since the

-- ' sclution du' and its variance-covariance matrix a' become unique if Q is

2 specified numerically, the latter will be sUbject to further discussion.
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4. MINIMAL-CONSTRAINT FORMULATION

4.1 Geometrical Background

The treatment of the rank-deficient adjustment in the preceding chapter has

resulted in an extended full-rank formulation, such as presented In (38) and

beyond. Here we describe another approach, where the rank-deficient adjustment

* is addressed via minimal constraints. We begin with a geometrical setup in the

universal space, comprising two sets of equations. The first set depicts the

-, rank deficient L.S. setup (16), or, equivalently, the tensor form of singular

normal equations appearing in (17a):

a' du" = du (45a)

' And the second set reads

Q u*= 0 (45b)
a

: which, in itself, is an Identity as indicated by Table I. But when considered

in conjunction with (45a), it ensures that du'a cannot be substituted for by
a=a a adu adu' +du" with a nonzero set du" . In terms of geometrical objects, it

ensures that the model vector du' cannot be substituted for by a general vector

du from the parametric space as could be done in (45a) alone, i.e., that du"EO,
where du" is a vector lying In the exLenslon surfdce.

In elaborating on this assertion, we express the components of a vector

lying in the extension surface in two coordinate systems. We use the system

(u a  from (5b), in which case the vector is symbolized by du", and the system

(w } from (5d), in which case it is symbolized by dw. The geometrical object

du" dw is described analytically in Table 1. This table enables us to relate

component sets of du"=dw to each other through the Q-tensor by
A -A a u f

dwA = QAdu" = Qdw (46a,b)
a

If du" dw is a zero vector, all its components are zero in any coordinates, and
avice versa. Suppose now that the component set du ' in (45a,b) is substituted

for by dua=du'adu . The new equation (45b) then becomes

0 Qdu' a A a -Au,, = dw A
= a ' adu " = Qa d

31



where use has been made of (46a). But this means that du" dw Is restri:ted to

zero. We can thus conclude that (45b) used In conjunction with any relation

containing du' ensures that no general set du a is allowed to replace du'

4.2 General Form of the Minimal-Constraint Resolution

We have just seen that no components du" a other than zero are allowed in

the solution of (45a,b). Thus, since du" is a zero vector, one can use (46b)

with du_=O and write

-0

-. Q dw 0

These zero components can be freely added to (45a), which, when combined with

(45b), gives rise to the system

a .dua+ Q 0 dw = du' (47a)

..du 0 (47b)
a

Equations (47a,b) represent the standard formulation of normal equations with

(absolute) constraints in adjustment calculus, where the new notation dw0

corresponds to the Lagrange multipliers. These multipliers are thus given a

clearcut geometrical interpretation illustrating why they must be zero In a

rank-deficient adjustment with minimal constraints.

In working with matrix notations from this point on. we transcribe the

system (47a,b) as

[dw = (48)

An analytical inversion of the regular (symmetric) matrix in (48) necessitates

the following matrix identities transcribed from their tensor counterparts:

, Or aQ0 Q A =aa Q A T I
paO a

a, '. aA'=0 ... a'
a$A- .0

Q a Q0 Qa' 0

- A A .. .

e .&.-..

'.--
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.. The matrix relations presented above yield

dut [a' ~1Fu*] (9LdW~ w [T oj J( 49 )

That the matrix in (49) is the Inverse of the matrix in (48) is demonstrated

upon forming their product in either order and obtaining I. This constitutes an

easy proof, In retrospect, that the matrix in (48) is regular. Equation (49)

results in

du' a'du*' dw* = 0 , (50a,b)

where (50a) Is the second equality In (41a), and (50b) corresponds to the

identity A du'=O implied by Table 1.
t. a

According to the adjustment theory, the variance-covariance matrix of the

parametric solution is the leading submatr'ix in (49). This can be regarded as

an independent confirmation that the necessary associated metric tensor a'

indeed corresponds to the variance-covariance matrix sought by the adjustment.

CV Further agreement with the theory is evidenced by the results (50a,b)

themselves, as well as by the zero diagonal submitrix in (49). One notices that

(49) furnishes a' without proceeding through an inversion of the positive-

definite matrix a* of dimensions (uxu) as was the case in Chapter 3. However,

the current procedure requires an inversion of the matrix In (48), whose

dimensions are [(u+u")x(u*u")], and which is not positive-definite. With regard
'to dx', g', g*, and, event(ually, dx' and g', equations (43a), (43b) without the

* middle equality, and (44), as well as the text that followed, apply perfectly

- well also in the present situation. Similar to the closing statement in

Chapter 3, the numerical outcome for du' and a' depends on the explicit form of

Q yet to be considered.

-'
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5. ANALYTICAL FORMULATION

5.1 System of Orthonormal Vector Components

A complete description of a general object In parametric-space components,

contravariant and covariant, is related to the components of all the orthonormal

vectors t ..... t..... Since k J .... can be determined from the

known tensor a, it follows that t ..... or an equivalent set of u"xu
a a

components, must be chosen in some manner. The remaining components can then be

found from
Q + aJ+to + a (51a)

22£ + jaji-... +tt +... = 8 (Sa

or, equivalently, from the Identities

a ai

_a = a = 0 (51b)

-A
As its analytical form suggests, the tensor Qa is closely linked to the

components of t .... Accordingly, a satisfactory description of this tensor
a

can be made only after an analysis of Interrelationships among the parametric-

space components of 2, j ..... t....

A collection of the above parametric-space components expressed in a given

coordinate system {ua } is called "system of orthonormal vector components", or

simply "system". Any such system must fulfill (51a,b). If (u a ) changes, the

system also changes (i.e., some or all of the covariant and contravariant

".. components of Q, j ..... t, .... change), but the formulas (51a,b) must again be

satisfied. In this study, one such system will be considered initial, and

others will be considered its variants. However, the underlying (ua and its

variants are of no interest here.

The analysis is facilitated if the vector components are grouped in

matrices In analogy to (13b,c). This does not detract from the geometrical

nature of the present development, and does not constitute a mixed algebraic-

geometrical approach. It Is merely a convention, where the geometrical quality

of the pert inent matrices is kept in focus through a matrix equivalent of

(51ab). The components of k, J ..... t, .... are grouped as follows:

--,*j Hj .. I ., - I12 lIJ l ... I (52a,b)
a a

T* [[t T [[t'l ... ] (52c, d)

:3 4
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where (9 J, etc., represent column vectors. The matrices L* and L have the
a

dimensions (uxu'), while T* and T have the dimensions (uxu"). The grouping seen

in (52a) already appeared as (13c). From their construction, it is clear that

all four matrices above have the full column rank, which Is u' for L* and L, and

u" for T* and T.

The term "system" describing the collection of vector components can be

used interchangeably in reference to the four matrices above, which assemble and

arrange these components in a prescribed order. In view of (51ab). any such

system must fulfill the following criteria:

LL* T + TT*T  I , (5,1)

L*L I, L*T = 0, T*TL = 0 T*TT I (54a.b,cd)

Equation (53) and the set (54a-d) are equivalent, expressing the conditions CDzI

* and DC=I, respectively, where the regular matrices C and D are formed as C=[L T]
T

" -and D=[L* T*] In either case, we have

*"'"" [L T] {[L* T*]T}I

In analogy to a previous statement, one system fulfilling (53) can be considered

initial, and others can be considered its variants. Each of the latter must

again satisfy the condition (53) or, equivalently, (54a--d). All possible

variants of an initial systems (including the latter itself) are said to

constitute a family of systems.

Of the four matrices L*, L, T*, and T forming a system, the matrix L* is

considered to be known since it can be obtained, for example, by the Choleski

algorithm for positive semi-definite matrices. This algorithm Is applied below

to the matrix of normal equations, a*', which can be transcribed from Table I as

a*' = L*L*T (56)

Without any loss of generality, the (u'xu') leading submatrix of a*', denoted

, Nican be assumed positive-definite. In practice, this is true either a

priori, or can be achieved upon reordering the parameters. The other

submatrices of a*' are, clockwise, N N and N where N -N1
12' 22' 21' - 21 12*

35$4
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Consistent with the partition of a*', the matrices L*, L, T*, and T are

partitioned into two submatrices each. The first submatrix contains u' rows and

is attributed a prime, while the second submatrix contains the remaining u" rows

and Is attributed a double prime. The partitioned matrices are presented as

, "~U [T ' [, *=,T
SLL * ' I' tT* T"

Due to the above stipulation for Nil, the submatrix L*' must be regular. Since

TN 11 = L* ' L*'T
~N11

it follows that L*'T can be determined by the familiar Choleski algorithm for

positive definite matrices, which assigns zero values to u'(u'-l)/2 arbitrary

T
elements and groups them below the main diagonal. The submatrix L*I is thus
upper-triangular and [*' is lower-triangular. From the submatrix N12 of a*',

one can determine L" through

.".", L* ,,T
.L. (L*') N

The submatrix N22 of a*' does not lead to any new relations; but utilizing the
22 -1

above two equations, we confirm that N 22=N21N1N12 as it should.

Clearly, the "Choleski choice" for arbitrary elements of L*' is neither a

theoretical nor a practical necessity. In fact, there exists an infinite number

of other acceptable choices, and they will be discussed in principle later. But

for the time being, L*' and thus the resulting matrix L* represent fixed

entities in our system. It follows from the above that

T
I,* [ RI L*  , (57)

-:.. R (L,, 1 -1 ,,T -
R ( L* - N N2 (58)

11 1

The matrix R of dimensions (u'xu") Is known from a*', and Is fixed throughout.

So far, little has been said with regard to the matrices L, T*, and T,

except that they must conform to (53) or (54a.-d). The matrix L is especially

important because it serves In forming a', transcribed from Table 1 as

% 36
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a' - LLT  (59)

and in forming du', similarly transcribed as

du' - Ly , (60)

• ,where y is a column vector of u' elements, containing the constants a, b, ...

- The values in a' and du' depend on a particular choice of 1. from the family of

systems, but the constants a, b, ... are tensor invariants, expressed from

Table I as

a =a du' , b = jfdu, ,

In matrix notations, the unique vector y is thus given by

T T T
y =.L du*' = L A g*dx (61)

Accordingly, equation (60) can also be written In the form

du' = LL du* a'du*' (60')

which appeared already in (41a) and (50a).

The resolution of a system can proceed along different avenues. For

example, if the uxu" elements of the matrix T* were given and fixed, both L and

T would be determined with the final validity by (55). This illustrates the

fact that in addition to the fixed matrix L, the determination of a system

requires the knowledge, or choice, of uxu" independent elements. We shall

proceed by dividing uxu" elements subject to choice into two separate groups of

tu"xu" and u'xu" elements, respectively. Since only the second group will play a

role in the determination of L and thus of a' and du' from (59) and (60), the

analysis based on the properties of a' and/or du' will be greatly facilitated.

37
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5.2 Family of Systems

In order to describe a family of systems, we shall choose one member of the

family as initial and then consider its variants as has been suggested in the

.e preceding section. However, simultaneous variations will apply only to the

matrices 1, and T*. Whereas the matrix L* is considered fixed from the

beginning, the matrix T can be fixed in one "loop" of a nested approach leading

to a sub-family of systems. This process can be imagined repeated with all

allowable matrices T, eventually describing the entire family of systems

consisting of the fixed matrix L* and of the matrix families of T, L, and T*.

The family of L will be shown independent of the variations in T, which will

enable us to accomplish the analysis dealing with du' and a' without the nesting

process. The matrix T is seen below to become fixed as soon as u"xu" of its

elements grouped in T" are chosen and held fixed. These elements comprise, in

fact, the first group of elements subject to choice alluded to at the close of

- Section 5.1.

To determine a general matrix T, we use (54b) with partitioned L* and T,

- where the former has been presented explicitly in (57). This yields T'=-RT",

and thus

T T
T [-R lITT". (62)

The submatrix T" must be regular due to the full column rank of T, but otherwise

can be arbitrary. Its elements, and thus also the entire matrix T, are now

considered fixed.

The symbols L and T* henceforth refer to the respective families of

matrices, while their initial choices are underlined. We thus have

I, 1, I AL , (63)

T*= T* 4 AT* (64)

where AL. and AT* symbolize the variants of the initial choices. The

complete family of T* can be described only after all allowable submatrices T"

in (62) have been accounted for, whereas the family of I. is independent of such

variations. This will become apparent upon considering the basic conditions

(54a d), which must be fulfilled by the initial system as well as any of its

variants.
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Particularly simple and useful choices for L and T* can be made In terms of

.the fixed matrices L* and T, respectively, as follows:

L = ,*(I,*TI,*)- I  (65)

T* T -1TTT1(T T) 
(66)

It is readily confirmed that with these initial matrices the conditions (54a d)

are satisfied. A valid initial system has thus been established. As will be

explained, this system can also be called canonical due to the advantage offered

by the form of L and T* above.

We next proceed to determine the family of systems by applying the

conditions (54ac,d); the condition (54b) is fulfilled by (62) with any regular

." / submatrix T" and need not be mentioned again. We shall formulate these

conditions with (63) and (64) for L and T*, utilizing the fact that they are

already fulfilled with L and T*. Prom (54a,c,d) we obtain, respectively,

T
L*TAL = 0 (67a)

*-' T_*TAL 4 AT*T L + AT*TAL = 0 , (67b)

AT* TT 0 (67c)

The matrices AL and AT* are partitioned in the same fashion as their

counterparts L and T* presented past equation (56). Upon considering (57),

equation (67a) gives

AL RT 11T AV= ("-1A
i ' AI. [-H T  II AxL'' - T(T')-IAL"' 

, (68)

where the last formulation follows from (62). On the other hand, (67c) results

in AT* L*(L*') AT*', where the partitioned form of L* from (57) as well as

the equality T'z-RT" from (62) have been taken into account. Since (67b) leads

T T -I
to AT*' -L*'AI' (T") we obtain

T T I
AT* = -1,*AL" (T" (69)

From (68). including the last formulation where T(T") I is fixed throughout, we

.-. ' observe that Al, depends only on the u'xu" elements of Al,", which constitute

the second group of elements subject to choice as mentioned at the close of

Section 5.1. It thus follows from (65) and (68) that L varies only with the

completely arbitrary submatrix AL", and is Independent of T". By contra,t, T*

39.-. -
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varies with both AL" and T". This is evidenced by (66) with (62) showing the

dependence of T* on T", and by (69) showing the dependence of AT* on T as

well as on AL".

We notice that (67a) alone leads to other useful identities. For example,

- due to the decomposition A=FL*T in (13a), equation (67a) implies that

AAL = 0 . (70)

The latter part of Section 2.4 indicates that a relation similar to (13a) can be

written in conjunction with the functional space, in which case A and F are
- L*T

attributed the symbol . But since L remains unchanged, (67a) also yields

AL = . (70')

The identity (70) enables us to confirm, via the matrix family of L, the

uniqueness of y previously demonstrated via geometry. In particular, If we

substitute 1. from (63) into the formula for y in (61), equation (70) shows that

the term containing AL is zero, so that
4-

y = LTdu* ' - LT AT g dx (')

- Thus, no matter which member of the family L is used in the computation, y is

unique and is expressed with advantage through L.

The usefulness of the Initial system adopted in this study can best be

illustrated by means of the additional identities below. Due to L*TT=o and the

definition of L and T*, it follows that

T T
LT = 0, T* L= 0 (72a,b)

These equations are valid with any T", but strictly with 1. and T* (I.e.,

AL" 0). Furthermore, in consulting (68) and (69), we deduce that

.LT AL 0 T*TAT = 0 (73a.b)

which are seen to hold true independent of AL" and T". The property (73a)

will greatly facilitate the analysis of a family of expressions such as L TL,
-aT T
reducing it to the initial product L L plus the family of AL AL,. The

vanishing (if cross products such as seen above is a trademark of canonical

systems in various mathematical problems. In this sense, the special initial

system used in the present analysis Is canonical
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Next, we develop an explicit form for the families of I, and T*. similar to

the expressions (57) and (62) for L* and T. We begin with ., whose format ion in,

(65) entails an inversion of two positive definite matrices of dimensions

'(ixiu'), the first being N needed in the computation of R and subsequently .,
T11

and the second being L* [*. However, the latter can be replaced by an inversion

of another positive definite matrix whose dimensions are (u"×u"). Siho- Il

practice u"<n' this avenue holds an economical advantage. We now formulate 1.

from (65) in conjunction with (57):

IH]T T I TI (4
L [I R)T(I + RR ) (L*4)

where the positive definite matrix I+RR T has the dimensi ons (ii' x u' 'ro dev, elop

an equival.,t but more useful expression, we first write the identity

R = (I + RTR) RT (I i RRT) (75a)

Upon premultiplying (75a) by R, adding I to both sides, and postmultiplying the

T -1
. new equation by (-RR one obtains (75b) below. And upon postmultiplying

T -1
(75a) by (I+RR one obtains (75c). The two generated Identities read

(I * RRT)- 1 = I - R(I + RTR) 1R T, (75b)

T T - 1 = T -- IRT
RT(I * RR ) (I + R R)IR (75c)

We now introduce the notation H for the following matrix expression, needed

in reformulating L as well as T*:

H [ R T(I + R TR)-l (76)

T
where the positive-definite matrix I+R R has the dimensions (u"xu") as

stipulated. With the Identities (75b,c), the matrix L from (74) becomes

T T T-I
L = ([1 0] HR )(*' ) (77)

The family of matrices AL has been presented in (68) and need riot. he repeated.

The new oxil) Icit formulation of the family of 1, then follows from (63) as

T + T T I1 T T
I (1 0o + HRT) (1R) I+ T  ] Al, (78)

where only A[," is variable. We reiterate that the u'xu" elements of iis

submatrix are completely arbitrary,
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With regard to T*, equations (62) and (66) yield

TO H (T.T ) ( (79)

- The family of matrices AT* has been presented in (69). The new explicit

f formlation of the family of T* then follows from (64) as

T T I
T i L, L ,,T) (T-T (80)

fetturing not only Al." but also T" as variable. We reiterate that the u"×u"

elements of the latter are arbitrary, subject only to the restriction that T"

must be regular.

Ecluation (80) illustrates how the nested approach can be used in theory to

des, rbe the family of TO. In a natural sequence, one first chooses a regular

" matrix T" and holds it fixed while varying AL" over its range. The second and

subsequent steps differ from the above only in a changed T", until the latter

has covered its entire range. However, to select a unique system of the family,

one only needs to choose one submatrix T" and one submatrix AL", and use them

in (62) giving T in terms of T", in (78) giving L in terms of AL", and in (80)

giving TO in terms of both T" and AL".

In considering that the goals of the present analysis are intimately linked

_ to the, (hal acteristics of di' and a' , it is expedient to concentrate on a sub

- * family of systems corresponding to a desirable sub-family of L. The hierarchy

in the treatm ent of elements subject to choice call then be altered accordingly,

based on a selected submatrix Al," rather than T". This submatrix yields a

Stunique matrix L from (78), while the matrix T from (62) and the matrix T* from

(80) are non unique, depending on T" which is now variable. Clearly, each pair

of T and T* must use the same T". At his stage not only L, hut also dol' and a'

. remain unique, unaffected by the variability in the elements of T". Bill

regardless of the hierarchy in the variable elements, for every one choire of

tL" and T". the conditions (54a-d) are satisfied and the four matrices I*, I,,

T, and T 'ontain a valid set of parametric-space components of the orthonormal

, vectors jt .

4.
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5A Families of Adjustment Quantities

As his been indicated In the latter part of Section 5 1, the matrix family

of 1. 1)l1iyi s an essential role in the determinat ion of the adjustment (fuant it i.s

a ,aind dl The description of L via the initial choice L and its variants ,'L

% ieads to the description of these quantities along similar lines. A subsequent

-in IlysiS Is g[reatly faci litated by the canonical property of the init ial choi(o.

However, the adjustment quantities such as dx' and g' are independent of the

paramttrin spade Components, which have been eliminated by tensor contract ions

As geometrical considerations have already indicated, these quantities are

uniqu. and mutt therefore be obtainable with iny choice of L,. This will be

confirmed by showing that the terms containing Al, vanish, similar to the

disciission (oncerned with y in the preceding section.

Thi. family of a' is described by (59) together with (63) In a

straightforward fashion as

a a' ALAL 1 ,AL ALL (81)

where

T
a' L1,T  (82)

Fqlat oll (A1) cannot be simplified because in general LAL To. However, the

Ttrace of the lit tor is eqtal to the trace of 1. Al, which Is zero by virtue of

the, can ronic al, I t (aI systm as evidenced by (73H) In terms of traces, we thus

Tr(a') Tr(a') Tr(Il AL ) (83)

The first term (rn the right hand side can also be written as Tr(I, TL), which is

1 1 T
Tr((*j .and the second term (at also be written as Tr(AL AL).

h,, family of du' Is described by (60) together with (63) as

d1,1, L y . (8 )

wht-r-f-

The most , ivnient form of' the column vector y has been presented in (71).

Equat ion 85) can thus be written as

Ad
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" du' LL du' a' du*' (85')

which corresponds to the canonical member of (60'). Finally, in describing the

family of du' Tdu', we again take advantage of (73a) and obtain
"..

T T r', du' du '  - du' du' + (ALy) (ALy) (86)

We now turn to the adjustment quantities independent of the parametric-

space components and confirm their uniqueness. In particular, using (70)

together with (84) we deduce that

dx' - Adu' = Adu' (87)

Similarly, (70) in conjunction with (81) yields

T T
Aa'A = Aa'A (88)

Thus, no matter which members of the families of du' and a' are used in the

computation, dx' and g' are unique; they are expressed with advantage through

the canonical members du' and a', respectively. We can write relations similar

to (87) and (88) in conjunction with the functional space, in which case A, dx',

and g' are attributed the symbol ". The uniqueness of parametric functions and

their variance-covariance matrix is then confirmed via (70').

5.4 Minimum-Trace and Minimum-Norm Criteria

We first examine the conditions resulling in a minimum trace of the

variance covariance matrix of the parameters, i.e., in Tr(a')=minimum. The

"-' groundwork for this task has been laid in the preceding section, where (83)

expresses the family of Tr(a') in terms of the fixed part Tr(a') and the

variable part Tr(,LAL ). Since the latter equals the sum of squares of all

the elements in AL, the necessary and sufficient condition for (83) to achieve

a minimum is

L =0. (89)

Arordingly, the family of a' In (81) reduces to a' given by (82), and the

family of du' in (84) reduces to du' given by (85) or (85'). We r'apitu)ate

tlhis tco()me by stating that the minlmum-trace criterion leads to the resolution

)f a' and d ' in the form

444
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- 1 (90a)

du' Ly - a'du*', (90b)
4du*,

where y is given by (71) and a convenient explicit form of L is presented In

(77) together with (76).

The norm of the parametric solution du' is defined by the square root of

the product du'T du '
. We now address the conditions leading to a minimum norm of

du'. i.e., to du'Tdu'=minimum. The groundwork for this task has also been laid

in Section 5.3. where (86) expresses the family of du' Tdu' in terms of the fixed

part du'T du' and the variable part (ALy) T(ALy). Since the latter is equal

to the sum of squares of all the elements in the vector ALy, the necessary and

sufficient condition for (86) to achieve a minimum Is

ALy = 0 . (91)

Clearly, Al, 0 alone would bring about this minimum. However, such a condition

* is sufficient but not necessary. It would become also necessary if (86) should
.' be fulfilled with any possible y and thus also with any possible observational

vector dx. But this is not our case, where only one vector dx is part of the

adjustment model, and we search for an optimal solution within this model.

In considering AL from (68), we conclude that (91) is satisfied only If

AL"y 0 . (91')

We now partition Al." into Its first column and into the remaining u' I columns

,"- forming the submatrix AL" . In analogy to this, the (unique) column vector y

is partitioned into its first element a and into the remaining u'-1 elements

, .... forming the vector y2 " It Is assumed that a*O, otherwise a different

partition would take place. Th-is is always possible unless y 0. which would he

,o trivial case where du*' -0 and du' -O regardless of I. and AT. With the above

partitions. (91') yields

A' [l. (1/a)y (
2 2

where the matrix AT" is completely arbitrary.

With (91) satisfied, it is clear from (84) that the resoiition of du' is

unique , equal to du' as in (90b) However. i' is iot uniqu , alt hmiriith is

partially restricted by (92). where only the mat rix AL.J u lrmeinsions
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.e

u"X(u'-l) i8 arbitrary, not the matrix AL" of dimensions u"xu' as in the

general case. In view of (68) and (92), the partially restricted family of AL

reads

AL = RT I ITAL [- (l/a)y 2 I (93)

"' The outcome for a' and du' is recapitulated as

T
a' =LLT

, (94a)

du' Ly = a'du*' (94b)

where the family of L Is written as LfAL in (63), except that the family of

Al. is now given by (93). With this restriction in mind, we can rewrite the

general formulas for a' and Tr(a') from (81) and (83) as they stand.
'., "-,,

Since the partially restricted family of AL In (93) depends on the data

through the column vector y. the members of the family of a' in (94a,b) could be

called "data-induced inverses" of a*'. Even though such inverses are non-

unique, they give rise to the unique canonical solution du' whose norm is a

S.minimum. However, unless AL=O characterizing the canonical system itself, it

is apparent from (83) that the trace of the elements In each matrix of the

family of a' is larger than Tr(a').

Iii principle, the minimum-norm criterion produces a unique solution and a

non unique variance-covariance matrix associated with it. From the adjustment

standpoint, such a situation is unacceptable. In a different approach

independent of data, the minimum-trace criterion results in the unique canonical

solution du' and the unique canonical variance-covariance matrix a' associated

with it. The column vector du' has the minimum norm and the matrix a' has the

minimum trace. These characteristics, coupled with the relative simplicity and

"-". -computational efficiency of the canonical expressions, make the minimum-trace

criterion a preferred tool in the resolution of rank-deficient models.
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6. CONNECTIONS AMONG THE FORMULATIONS

6.1 Minimal-Constraint Matrix

Chapters 3 and 4 have resolved the geometrical setup along general lines,

and have transcribed the main results in matrix notations to facilitate their

-Acomparison with standard adjustment formulas. The tensor Qa which played

an important role in that development, has been transcribed as Q, known in

adjustment calculus as the minimal-constraint matrix. The geometrical

development has resulted in a non-unique solution du' and a non-unique

variance-covariance matrix a'. These quantities become unique If Q is given

explicitly In practice, Q is sought In a form that leads to desired features

T_of the resolution. It Is well known, for example, that if AQ -0, the minimal-

constraint formulation leads to the smallest possible trace of a'. We shall

*] confirm this and other properties using the outcome of the preceding chapter.

Various resolution criteria, such as those involving the trace of a' or the

a a
norm of du', are linked to the components R , J , ... and thus to an implicit

parametric-space coordinate system. These criteria cannot be represented

graphically (in terms of tensor invariants), nor expressed in tensor equations,
,i.

o

because the geometrical configuration as well as the pertinent tensor equations

h. are independent of any coordinates. One is therefore compelled to analyze

Individual tonsur components as we have done In Chapter 5. This step would be

unnecessary in the full-rank adjustment, where u" O and no components of the

orthonormal vectors are arbitrary.

Chapter 5 has shown that Q Is not needed if the adjustment quantities du'

and a' are expressed directly through the parametric-space components of

R, j ..... without an intermediary such as the extension surface. The latter

has entered the development, in one capacity or another, in both Chapters 3

and 4. Although this surface is implicated also in Chapter 5 through the

parametric-space components of t ..... its role could have ended upon obtaining

an expression for the family of 1. needed to describe the families of du' and a'.

Such a limited role would have merely confirmed that AL in (68). based

*TFentirely on L* [.- I in (54a), Is valid. However, we have developed also the

family of T*. in order to relate the analytical formulation in Chapter 5 to the

.- formulations in Chapters 3 and 4 which utilize the matrix Q.
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Table 1 suggests that a general matrix Q can be presented as

-- T
Q TT* (95)

where

- A
T ff[t I...), (96

and where T* appears in (80). With the latter, we describe the family of Q by

Q :T(T")- (HT  _ AL"L* ) (95')

Chapter 5 has shown that the only variable elements affecting du' and a' are

those grouped in AL". We can thus qualify the statement at the close of

Chaptr 3 by stating that the variability in du' and a' caused by the

*, variability in Q is due to AL" but not to T" or T.

From the structure of Q in (95') it is clear that a given minimal-

constraint matrix of dimensions (u"xu) can be premultiplied by any regular

matrix and the result is again a valid minimal--constraint matrix. Such a change

in Q can always be thought of as absorbed by the arbitrary matrices T or T".

The latter possibility illustrates another Important fact, namely that T can

vary without affecting Q because T" can always compensate for such variations.

In relation to Chapter 3, this property helps us to verify that k*=k -1 can

indeed be an arbitrary positive-definite matrix used as a weight matrix In

conjunction with a given Q. Upon writing

k = TT (97)

as suggested by Table 1, one can compute T, for example, by the Choleski

algorithm for positive--definite matrices. Although changes in k* entail changes

in T, the matrix Q can be kept Intact by virtue of the arbitrariness in T".

In tracing such variations further, we realize that they propagate into T* and

thereby into a*". (To see this we use k*-k in 40d and confirm that a*"=T*T*

where T* is affected by T" in the manner of 80.) It should be emphasized that

the variations described in this paragraph leave du' and a' intact.

In assessing the approaches of Chapters 3-5, we first recall that du' and

a' depend on the arbitrary matrix AL" either through L or through Q. The

former case, presented in Chapter 5, is straightforward. The latter case,

presented in Chapters 3 and 4, Is more complex due to the introduction of Q
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Ik-

Vo , 'i'.'" . . . . . : ~ . < ---



cintaining the addil tonal arbitrary matrices T and T. However, these two

matrices have no bearing on (it' and a'. From the standpoint of this study, they

serve mainly to illustrate that the standard adjustment formulations using Q

- are quite cumbersome when compared to the analytical formulation. If we compare

the sizes of the matrices to be inverted, an economical edge of the analytical

formulation hecomes apparent as well. Chapter 3 contains one such matrix of

dimensions (uxu), where u=u'*u". Chapter 4 also contains one matrix to be

inverted, but its dimensions are [(u+u")x(u+u")J. Howvver, Chapter 5 only needs

to invert one matrix of dimensions (u'xu') and one matrix of dimensions (u"Xu").

Perhaps the greatest asset of the analytical formulation is the simplicity

V of its theory. In keeping the geometrical qualities of the basic matrices in

focus, one can readily generate families of results fulfilling specific criteria

and classify them according to the u"xu' arbitrary elements grouped iii the

matrix AL". Equivalent results could be obtained using Q , but this would

entail differentiation of complex matrix expressions. Such an approach, besides

being more tedious, would be algebraic in nature. It has been avoided, and the

outcome of Chapter 5 has been ,xtended to benefit also the formulations in
Chapters 3 and 4. This strategy is rooted in the fact that a given matrix AL"

leads to the same results regardless of the methodology, I.e., regardless of

whether it is used In forming I, In (78) or Q in (95').

These results are now briefly summarized. A completely arbitrary Al."

characterizes a general resolution represented by the (unrestricted) families of

di' and a' . The partially restricted AL" from (92) characterizes the unique

minimum norm solution du' and a partially restricted family of a'. And ALO

characterizes the unique minimum-norm solution du' and the unique minimum-trace

variance covariance matrix a'. As is suggested by (95'), in the last case the

matrix Q simplifies to the form denoted Q and called canonical, where

1T
=T(T") 1H (98)

The matrices T and T" used in forming Q in all three categories are regular,

'it o herwise can he arbitrary. In terms of Chapter 3, this implies that the

T
v, ri,,I(. ( ,v,,r ia:nce matrix k-TT associated with the minimal coiistraint (an

be- arbitrary provided it is positive definite.
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Finally, we make a connection between the form of Q and the rank of the

matrix A augmented by Q. In a first step, using any member of the family of

Q presented in (95) as

- - T (9Q = TT* (99)

,, we show that

rank = u (100)

which is (39b) developed in Chapter 2 through geometrical considerations.

Since (99) represents a straightforward geometrical relationship, this step

reduces to a confirmation of consistency in geometrical derivations. Recalling
T

from (13a) that A=FL * , we write

FA F 0]L * T 111

The first matrix on the right-hand side has the full column rank u, and the

second matrix is regular. Upon postmultiplying (101) by [L T] and recalling the
T -T T

identity (55), the product (A Q I [L TJ is seen to have the full column rank

u, hence (100) is necessarily true.

As an important special case of (99), we consider the canonical system

synonymous with the minimum trace property. Thus, Q is restricted to the

special case seen in the explicit form in (98), written in analogy to (99) as

-TT*T (99')

(The term "case" is used here loosely, reflecting the fact that Al,"=O; we know

that T and T" can be arbitrary, but these matrices hold little interest at

this stage.) Upon using (13a) for A in conjunction with the identity (72b), It

follows from (99') that

AT A9 0 (1001)

which constitutes a special case of (100).

In including also a c iverse demonstration, we further show that (100)

leads to (99). In this ess the symbol G is used in place of Q. Since it

must hold that rank(G)= the matrix G can be decomposed into the product

50

.......................................!



i G = G 1 G2 .

where G1 is regular and G2 has the full row rank u". The matrix GI car be

considered arbitrary, but if G is fixed then any one choice of G1 settles 62.

Recailing again (13a) for A. we can write a relation similar to (101), except

that T is replaced by 61 and T*T is replaced by G Since the matrix on the

-left-hand side of this new equation has the full column rank u by definition,

the matrix tL* G2TT on the right-hand side must be regular. But then 6 can
2 T

represiit an adlmissible matrix T* (which, in turn, settles l, and T). Since we

can further identify G with the arbitrary regular matrix T, we can write

-T

G=TT* for any matrix 6 satisfying the initial rank stipulation. Accordingly,

any admissible matrix G has the structure of Q in (99), and the demonstration

N., Is terminated.

As a special case in the converse demonstration, we wish to proceed front

(100') to (99') using the same notations and basic steps. We thus begin with

T
AG =0, representing a special case of the initial rank stipulation. Next, we

replace A by FL*T according to (13a). Since the rank of F is u' it follows that
T T TT

4 L T G=0, hence L*G = 0, which is similarly a special case showing that. the

matrix [L* G T2I is regular. But from (72b) It follows that the admissible T
* T

2 T -T

represented by G must be T* , so that we can write G-TT* completing the
2

demonstration. We have thus established that in the approaches utilizing the
-T

matrix Q, the minimum trace criterion is satisfied only if AQ :0. This

occurs only for Q=Q, whose explicit form is given by (98). In practice,

such a matrix is usually easy to obtain from the structure of the adjustment

model.

• 1 -,l h
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* 6.2 Confirmation of Consistency

In this section, we shall verify that the results for du' and a' are the

same in all three formulations described by Chapters 3-5. For its simplicity,

the standard of comparison is adopted from Section 5.1 In the form of equations

(60), (59), and (61), respectively:

T
du' Ly , a' = LL (102a,b)

where the fixed column vector is

y = LTdu* ' (102c)

- Equations (102ab) are general, not subject to any criteria such as those

analyzed in the latter part of Chapter 5. They are also the most

V., straightforward expressions offered by the geometrical setup for du' and a'.

The general results for du' and a' derived in Chapter 3 appear in (41a,b),

rewritten here as
e'-

du' -- adu*' , a' aa*Ja (103a,b)

The matrix a Is given by (42), which reads

a = (a*)-I (103c)

The matrix a* is formed as in (40b-d), namely

-_ - ,AT -T -

. a* a*, + a*" a*, g*A , a*" Q k*Q (103d,e.f)

All of (103a-f) follow from the geometrical setup developed In the context of

the universal space.

Finally, the genral results for du' and a' derived in Chapter 4 can be

read from (49), already confirming (102a,h) However, this confirmation is

achieved through the matrix Q, which we shill )olt consider as a whole, but,

rather, in terms of the basic matrices T and T* (The same applies for Q in

the last paragraph.) Thus, we begin with opatlon (48), rewritten In the form

'u a(Q04)*

.dw*j Q 0 0 (104)

i* .- Y.- * * ........... ;,.,:.-........ -......-.....-.. v".. . "-..-... - -"."-..'......-...-1..---.,
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After the indicated inversion, the matrix a' will occupy the location of a*'

Equation (104) is a consequence of the geometrical setup developed In terms of

an extension -surfae vector restricted to zero.

Since all of (102a)-(104) reflect the same geometrical setup, the results

for du' and a' must be identical. Although this is not readily apparent, we

should be able to confirm it using known geometrical relations among the

orthonormal vectors k, J ..... t .... The parametric-space components of these

vectors have been grouped in the matrices L*, L, T*, and T forming a general

. system. Accordingly, the known geometrical relations just mentioned are

expressed by (53), or (54a-d), or (55), which are all equivalent. However, the

presence of Q requires the use of two additional matrices, denoted T and

T*. which contain the extension surface components of t, ... The former has

been presented in (96), while the latter is similarly defined as

[[ ] . . ] (105)

We now list the geometrical identities which will be used in relating the

results of Chapters 3 and 4 to those of Chapter 5. From Table I we read

a* L*L *  a*" TT*T 106ab)

-TQ T *T (107)

Equations (106a,b) also follow from (103e,f) upon using the decomposition of A

and Q (the latter equation further uses k*k 1 with k given in 97). Although

all three Identities have alreadv been encountered, they are listed here for an

easy reference. The definilions (96) and (105) imply the identity T* TI,

and thus

,T --1
T5.. 1T (1o8)

Finally, due to the orthogonality of any vectors in the extension surface with

respect to any vectors in the model surface, we have as a special case:

T (11 ( ,109)i=T...ot' 0

This ldentity also follows from (40e), (13a). and (54b).
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In turning to the outcome of Chapter 3 as presented in (103a-f), we write

a* [L* T*I [L* T*] T a [L T[I T T (ll0ab)

where (1lOa follows from (103d) and (106ab), while (l1Ob) follows from (103c)

and (55). Both identities can also be deduced from Table 1. If we substitute

(IlOb) in (103a) and use (102c) and (109), we confirm the result (102a). And if

we substitute (106a) with (l1Ob) in (103b), we confirm (102b) as well.

The confirmation of the outcome from Chapter 4 is lengthier and more

complex. First, we form the matrix to be inverted in (104) as

I-*, Q L* T* 01l° 0 T*Ta* !Q ( 111)

Q 0 0 T TiLo T TJ

which can be verified upon using (lOa) and (107). Next, we invert the matrices

on the right -hand side as follows.

I,* FL Tj T (112a)

Lo T -0 0

FL* T* -T(11b)

IL T T L0 0 T2

where (112a) can be verified via (54a d), and (112b) can be verified via (53).

If we multiply together the light hand ,ides of (112a,b) in the same order,

we obtain the inverse of the matrix on the left hand side of (111). The

substitution of the latter in (104) yields

(ltw* L 1 TT -*1 du*3
Lw LT*T T 0 L 0

Iri (onsi(herin (102c) . the first e(u;t in implied by (113) confirms (102a).

Moreover, with (109) taken into account, the second equation yields dw* O. In

:)I'rPVflPnt with the statemeint fol lowing (104). the location of a' in (113) is

ot tipit d by LT , which confirms also ( 102b). Upon further scrutiny, (113) is

seen to he identical I (49) due to the identitv

A TT* (ll4)

which ('icn be read directly from Table I Tbis concludes the task of verifying

the consistency among the. results (of (;h,,p ,i rs 2 5
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7. DISCUSSION

7.1 Completeness of Adjustment Families

The method suggested in Section 5.1 for the computation of L*' from N has

been the Choleski algorithm for positive-definite matrices. Subsequently, the

matrix L,* in (57) has been assumed fixed (luring the development leading to the

description of adjustment families In Section 5.3. We shall now show that any

method used in the computation of L* results in the same adjustment families of

do' and a', which are thus complete regardless of the numerical values in L*'.

The only admissibility condition for L*' is

T
L*'L*' N 115)

which has also been at the root of the Choleski choice in Section 5.1. Since

N 11 is given and thus fixed, the matrix R defined in (58) is fixed throughout,

i.e.. independent of L*'. The geometrical relations leading to (61) have

revealed that the column vector y is fixed as well. Furthermore, in consulting

-.. (68), we realize that although Al. is variable as a function of AL", it is

fixed with respect to L*'.

On the other hand, I, and thus also L depend on L*'. as is clear from (74)

or (77) and from (78). However, if we form a' by (82) in conjunction with (74).

we obtain

T  IT( RRT-l -1 T -
a' . 1 ( + R N1 1 (1 + RR (I RI

- where (115) has been taken into account. Moreover, in rewriting (85') as

do' adu*'

where du*' is given and thus fixed, we conclude that both du' and a' are fixed.

Accordingly. (83) and (86) Indicate that the trace of a' and the norm of du' are

rindependen t of L,*' although the same cannot be said of the families of a' and

i du' thems.lves But if one can show that the fami ly of a' is I ndependent of

-,*' the same wi I he true for the fami ly of du' by virtue of (60'

The family of a' is given by (81), where the first two terms on the right

hand side are independent of I,*' Sincice the third and the fourth terms are

tr~insposes of each other, all we need to show is that LAL T is independent of
I,* We h.-g 1 by 1.'isum ng the exist.ence of two distinct families of I, I,+Al,.
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The first corresponds to the (holeski choice and is called "I, ard the second

N corresponds to a different admissible choice and is called "J. Based on (115),

it must hold that

_..[ ., T , T
whr ' T . (116a)

where L,' is the submatrix 1,*' as evaluated in the family i, etc. Next we
I

postulate the following admissible relationship between the unrestricted

submatrices ,L" and AI.:

AL' AL'1L) 1* ('16b)

since both L*' and L!' are regular, any AL' can be written asj

A" " = AL','(L*') 1L*'

where the first submatrix exists (in fact, It can be computed by 116b).

As a matter of interest, we form ALAI, T for the family j. where AL is

given by (68) with Al." attributed the subscript . In taking advantage of

T
(l16b) and then of (116a), we arrive at ALALT for the family i. This

outcome is obtained with any possible AL i In conjunction with a given L*,'

and, upon repeating the procedure, in conjunction with any admissible L*'.

This indicates that the family i for A L, A T is indeed complete. Since the

(lerivatlon could be retraced with "i" and "j" interchanged, it follows that any

T
admissible ,*' leads to the same (complete) family of ALAI, . Essentially

" the same conclusion has been reached earlier, when Al, has been shown to be

independent of L*'.

The crucial step in the (rI crc ut (emonstration proceeds in analogy to the

previous paragraph, but is simpler ii that it does not necessitate the identity
TI (lia) We form LAL T  fo: the family . where both the submatrix [.*' in (74)

or- (77) and the submat r ix AL' in (68) are attr ibted tie subscript .j 1,eeiri

I_ intact whil e taking advantage of I 116b), we arrive at LAIT for the family i.

An argument simi lar to t he one above leads to the conclusion that the family i
T.

for' LAL s complete. arld that thf' -Ine' famil Iy ( ,1I he obtained with illy

admi;sible l,*' Tlhis concludes the proof thit the familiecs of dli' and a' are

[ * I ideopeldelnt of ' e that the same- (complete) iimilies are obt,Oiined with

any 1, fulfillini ( 115) One 'an th us adihpt the (holesk i c'ho ice and consiider

f" 1110 ' i -he eby l, fixed t h1rolgholir . ',s has been ant ic i pat ed in Sect ion 5.1

04
.#'

[:;%'V

;06.



7.2 Uniqueness of the Canonical Property

The property central to the analysis of adjustment quantities in Chapter 5

has been embodied by (73a) holding identically with any admissible AL, namely

L'T Al, 0 (117)

As we have seen in Section 5.2, any matrix L can be expressed by L-L+AL, where

the first member is defined in (65) and the second member appears in (68).

% Suppose now that 1. is not. the only matrix fulfilling (117) and denote another

%, such matrix as I., where

L L AL .(118)

Since L is a matrix from the family of L, Al. must be expressible by (68),

i.e., it must have the form

A L T lTAL [ Rw  1 ]TL"

T
If it should hold that L AL=O for any admissible AL, In considering

(118) together with (117) we would have

T
A, AL = 0

where AL has the form (68). This relation can thus be written explicitly as

AL"T (I + R TR)AL" 0 (119)

where the submatr ix AL" of dimensions (xu "u') Is completely arbitrary, and

the submatrix AL" of the same dimensions is to be determined. In the usual

situation. whert, u' u" AL" can be thought of as parti tioned into a (i"xi")

submatrix and the remaining submitrix. Since the former can be assumed

Fnolisiny{la., rind sin{Ce the matrix (l4RR) is positive definite, it follows from

(119) that we must have 'I. 0. hence

'or the sake of completenl.s4, we also consider the unlikely case uu"
h ".

I# ' 1l9,)} m,n, t he sa t sf. . ts ed wi th any Al.", thi net eff ect is the same as if

it had t i ho I(d wit h t I I stich submat rIces simultaneously. , e., as I f the co I umns
of I.' wer' aupim f, t ed by t he (o I using of a I I the {ot her suhma r I ces A.' One

Sherl .I wa 'Vs hnoso ' II" i lc 'p, '1p ' f it o I imns )ir'r theIr tot I i ty, ind fCc'm a,

W



regular matrix. In so doing, one arrives at the last step in the preceding

paragraph, including the result (120). We can thus conclude that the matrix L

fulfilling (117) is unique, defined by (65) and developed into (74) and further

V- . into (77). Indeed, this is the matrix we would obtain if we started from the

'01( ,ond iti i (117

7.3 (anonical System and the Pseudoinverse

rhi" unique pseudoinvere M of the matr ix M fulfills four conditions,

c-tlled "', "g", "r", and "m". The condition "C' states that the matrix MM is

symmetric, "g" states that MM'M M, "r' states that MM +=M+ and "m" states that

M M is symmetric. In the present context, the role of M is played by L*T. In

~ A- T
considering L*T L=I from (54a). w' observe that the condition "9" for L as a

potential pseudoinverse of [*T is satisfied. The consequence of this special

form of "" is an automatic fulfillment of the conditions "g" and "r" as well.

T.
On the other hand. LI,* is symmetric only if 1,,. In particular, with L from

(65) the symmetry is confirmed and thus

L - L*(f,* T,*) - (L* (121)

There can be no oth(r matrix L satisfying the condition "m" because the

pseudoinverse Is unique.

In considering the ident it ies (56) and (59), i.e.,

a L**T a' LLT

with the aid of (54a) we deduce that

a a*' a* a' a, a

These equations follow also from the geometri,,il setup, and can be obtained upon

(onsulting Table I. If a' should be the pseudoinverse of a*', the matrix LL*T

'., would have to be symmetric, in which case both conditions "e" and "m" would be

sat isfiedl simultaneously. But this can occur only if L,=l,, as we gather from the

last step that has led to (121). Accordingly, we conclude that

T

a (a*, (122)

r 

A
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As a matter of interest, we now turn our attention to the matrices T*. T,
S.

Q, and A. In repeating the demonstration which has resulted In (121), but

with T* replacing L* and ('Id) replacing (54a), we observe that T and T*T are

the pseudoinverses of e,ch other only if TT*T is symmetric, which, in turn,

occurs only if T* T*. Paralleling (121), we thus have

T [*(T*T T*) (T* T (123)

where the first equality follows from (66). The matrix Q from (95) and the

matrix A from (114) yield QA I, hereby satisfying the first. three criteria

for A to he the pseudoinverse of Q. However, the condition "m" can be

T
satisfied only if TT* is symmetric, which leads to T*'I* as above and thus to

the canonical system. The last assertion is due to the fact that ATT*O in

(69) entails AL" :0. (The canonical property does not depend on T", but the

latter must be the same in both T* and T.) In this system one has

TT*T  A - TT * T (1 24ab)
N

where T* and T are linked by (123). With the aid of (124a,b) and (108), we

finally write

-T T ) -1 - ( 1 2 5 )

* In terms of Chapter 4, we conclude that If the canonical system is implied in

(48) and (49), not only is the minimum-trace criterion satisfied, but the four

corresponding matrices in these equations are the pseudoinverses of each other.

9.

• .,

4o

4
•
.

Ii %,%

S.9-

b..

V -. . . . .



8. SUMMARY AND CONCLUSIONS

The subject of this study is the parametric least-squares (.S.) method,

where the adjustment model is either linear or has been linearized beforehand.

In adjustment notations, the L.S. setup is represented by

L AX V

where L, V, and X are the vectors of I linearized observations, n residuals, and
0

n- parametric corrections to X (an initial set of parameters), respectively.
b 0 b

The vctor L is formed as 1. L where L contains the actual observations and
0I 0

L contains the values of the observables consistent with X ° . An additional

vector representing n adjusted linearized observations is symbolized by L'

where

L' AX.

'he let tvr A denotes the des ign matr ix of dimensions (nxu) which either has the

1fii i column rank or is rank- deficient. The former kind has been treated in

[ H laha. 19841, while the latter is dealt with herein. However, the basic L.S.

setiip and its geometrical Interpretation are the same In both the full-rank and

the rank deficient adjustment models. The L.S. criterion in either model reads

V pV minimum P -E

where P ,ind 1 are respectively the weight matrix and the variance covariance

mti ix of observations, both of which are positive- definite. The quantities E

(and this P1). A. and I, are known a priori.

Most of the theory concerned with the development of a geometrical setup

t omorphlc in every espteo t ti; lhe pi:',imetric [..S. adjustment can be found in

,(ti1 tf'r" 2. in this task, th,. tertis r structure has proven Invaluable. It has

bnft-,ht about simple correspondences between adjustment quantities and

• FcomEtrical objects, as can be gathered upon transcribing the above three

t'tjqiit ia)IIi iI tensor nolations:

dr Y ia rx[,-.fix A t  (11, c  o x ' '

(I

-x r r dii

r rt I

sr
V.°,' 
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Accordingly, dxr corresponds to the (linearized) observations, dx' to the

adjusted (linearized) observations, dx ' r to the error estimatc., (i.e., minus the

residuals), du' a to the parametric corrections, Ar to the design matrix, g
a sr

to the weight matrix of observations, and g to the variance-covariance matrix
rtof observations. Just as their adjustment counterparts, the tensors g (and

thus g ), Ar  and dx r are known a priori.
a

r r r aThe geometrical objects whose components are dx , dx' dx ' , and du' are

referred to as vectors dx, dx', dA", and du', respectively. Although Ar
a

cannot itself be represented graphically by a single object, It can be expressed

via components of orthonormal vectors. In its tensorial formulation, the L.S.

criterion stipulates that the length of the vector dx" must be a minimum. Since

.' the vector dx' is restricted to an implied model surface, it follows that dx" is

orthogonal to this surface. Crucial to the geometrical development of both the

full rank and the rank deficient adjustment models is the property whereby A
aAr

r. transforms the components of vectors lying in the model surface from one

coordinate system to another. Accordingly, the above relation for dx ' r

indicates that the vector denoted du' Is identical to dx'

The mere transcription of the basic L.S. setup in tensor notations suggests

an alternative to the standard algebraic treatment of the parametric adjustment.

The approach undertaken herein uses geometry with tensor structure to express

'1ll the adjustment quantities in terms of orthonormal vectors. Through this

isomorphism. the observational vector dx lying in an n--dimensional observational

space is projected onto a u' dimensional model surface as dx'=du'. The

observational space is spanned by n orthonormal vectors Q , jU...........

while the model surface embedded in this space Is spanned by u' orthonormal

vectors Q, j, ... In the rank deficient problems, where the rank of the design

matrix Is ' and the rank deficit is u":u u'. the model surface is also embedded

in a u dimeirsional parametric space spanned by u orthonormal vectors k , j.....

-------and is thus an Intersection of the observational and the parametric

spa'(s. In the full -rank probi ems, where u=u' , the parametric space and the
model slirfat t- In, Id I In bo th cases the contravarlant components dx'

r 1,2. n . int the runt ravarIant components do , a 1 , 2,.,u, are related

throtigh thi design tensor A h Tbe latter is shown to be expressible by the
01

obervattion~i Ispat'' contravariant components arid the parametric- space covariant

Srtmpnoriv ts of the, rrthonormal v,'ttr C I , q . .panning the mod' , surface.

. . . .. . . . . .... . ..". -,. . ...".'. ..--. .--'- - 2 ': '. "2- '-V--- .-'. -" ..--. : - : v .-.-- '--. - -" - . . "- '-".":''--



The isomorphic geometrical setup reveals that all the adjustment mWtrices,
i~e.. the design matrix, the variance covartance matrices (of observations,

adjusted observations, residuals, and parameters), and the corresponding weight

matrices, can be expressed as a product of two constituent matrices each. This

.' -outcome is further qualified as follows:

(a) All constituent matrices are written in terms of orthonormal vectors, the

elementary geometrical objects;

(b) These vectors are the same In either matrix of the constituent pair, only

the type of their components may differ; and

,c) The set k, j, spanning the model surface is common to all constituent

matrices except those pertaining to the residuals (and, in the rank-

deficient context, also to the minJmal constraints If the latter are used).

The geometrical development yields simple expressions for the (singular)

weight matrices of adjusted observations and residuals, not derived in standard

Idjustment literature. In the case of rank-deficient adjustment, it confirms

the familiar outcome that the unique variance-covariance matrix of parameters

V h iit has the minimum tire is the pseudoinverse of the (singular) matrix of

-'-. normal equations. At the same time, the minimum-trace criterion results In the

in "ii' parametric solution which has the min'mum norm. By comparison, the

minimum norm criterion alone leads to a new family of "data-induced" inverses,

each of which produces the sam' unique solut ion as above, not merely the same

e .minimum norm. However, since each such inverse constitutes a variance-

-ovarianc(e matr ix of parameters, and since a unique parametric solution with a

non unique variance covariance matrix has little practical value, the minimum-

-tiarE approach is preferred to the minimum norm approach.

From thoe theoret ical stindpoint, both the minimum-trace and the minimum-

norm resolutions are merely special cases of the general resolution, where the

solution ,,ctor as well as its variance covariance matrix are non unique. The

c - . gS:~: eneraI resolotion has been analyzed in three distinct formulations presented it)

<apte rs 3 5 , all of which have been confirmed in Chapter 6 to give idnical

i'sui This not rome is summarized be low using the familiar matrix symbolism.

- Eiow v'er. the transcription of tensor relat lins Into matrix relations Is intended

to pre't'i vv the l t 'ii -,ymbols gi!'en to loIsoi quantit ies, rather than to change

ON- thm in standard aid,'stment ' ymbonis such as tho;e seen in the beginning

W%,.
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paragraph. The tensor indices are simply dropped, and, in the case of a purely

'ovarian t tensor, the original letter symbol is attributed '*" Thus, for

example, the tensor components dxr are grouped In the adjustment (column) vector

dx. Although the symbol dx has been used earlier to Identify a geometrical

object, its role is clearly discernible from the context. As another example,

the tensor components du ' are grouped in the adjustment vector du', while the
components du where du-A r ixr are grouped in the adjustment vector

du*' , where du* -A Tg*dx. The latter is sometimes referred to as the right hand

side of normal equations. This transcription Illustrates the close

correspondence between tensor contractions and matrix multiplications.

The universal space formulation of Chapter 3 generates the augmented

observation equat ions presented in (38) by joining the minimal constraint matrix

Q to the design matrix A:

dx - A" dx"
l du',

T -T TThe augmented matrix [A Q ] must have the full column rank as stipulated by

(39b). The complete weight matrix Is written as dlag.(g*,k*), where g* is the

original weight matrix of observations and k* is an arbitrary positive definite

*. weight matrix associated with the minimal constraints. The matrix of normal

equations in this formulation is a*, which Is positive-definite in contrast to

the original positive semi definite matrix a*'. The general solution du' and

its variance rivariance matr ix a' are expressed from (41a,b) as

du' adu*' = a'du*'

where a -(a* The solution do adu*' is the standard outcome of a full rank

model represented here by the augmented observation equations. However, the

varianc, t(v,, iaire mati ix in su(h i model would be a, which should be modifiedLas illdicat-I, ]I) order fl yield the- desired positive semi definite mtrix a'

fh, m i ri imaI (:ont raint formolat ion of Chapter 4 also uses the matrix Q,

but proceeds t hrf)ugh a m nrlted normIl equpal Ions as in the stlandard adjustment

with (IhbsollIt () s The'se, normal equations are (lpi(tvd in (48), and

are resolved in the form

L *.. * . **
[-.- * . . . . . . . . . . . . . .



."u ~'QT [-du*,

Ldw- LQ 0 L0]

After the inversion, the variance covariance matrix a' occupies the location of
"As has been shown in (50a,b), the complete solution consists of du'=a'du*'

confirming the previous result, and of dw*=O. The vector dw* corresponds to the

Lagrange multipliers in adjustment calculus. The geometrical interpretation in

Chapter 4 illustrates why they must be zero.

he analytical formulation of Chapter 5 circumvents the use of minimal

constraints in any capacity, and thus also the use of Q. Instead, it proceeds

to form the basic matrices L*, L. T*, and T, containing the parametric-space

components of the orthonormal vectors e, j..... t .... The geometrical

interpretation of these matrices reveals that only L* and L, ,ontaining the

components of P. j, partic ipate in the resolution of du' and a'. On the

other hand. T* and F, containing the components of t ..... serve in the

analysis of Q in view of Chapters 3 and 4. The simplest expressions for du'

and a' follow from the geometrical setup as

i- ' a' du*'

a' LLT

A complete description of 1. is offered by (78), namely

'F T T-I T T
-, ( 1 0 1 HR (L*, ) I j R AL

With the exception of A!.", all the matrices on the right-hand side can be

computed from the matrix of normal equations a*', and are considered fixed. In

this task. a*' is partitioned clockwise into Nl. N N and N , where the
11' 12' 22' 12'

loading submatrix N of dimensions (u'xu' ) can always be assumed positive

definite, whether a priori or upon reordering the parameters. The matrices
-""" I,* T I

a ai R of dimensions (u'xn') and (u'xu"), respectively, can then be

rbtained via the Choleski algorithm as explained in Section 5.1, i.e.. via
T I-I'* N 11 and R N l N 1 2

. Finally, 1he matrih H of dimensions (uxu") is
1112 T T T1 1

-onstructed in (76) as Hz{-R I (I+R H)

The above expressions for du', a', and L reveal that the properties of the

resollution depend entirely on the u"xu' elements grouped In Al,". If this

matrix is completely arbitrary, L has the most general form resulting in the

64
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general resolution of du' and a'. Clearly, a non unique solution du' and a non

unique variance covariance matrix a' hold mainly theoretical interest. If

Ar," is partially restricted by (91'), the solution du' is unique arid has the

minimum norm. The restriction (91') can be written explicitly as

1 T
Al." ') l ([1 01 H )du*' = 0

or, can be further developed into (92), etc., all of which are data dependent due

t o du*,. However', a' is still non unique since it is only partially restricted

with respect to its general Counterpart. Finally, if Al," (, botl (l]i' and a'

lre unique. In this case du' is the minimum norm solution identical to the one

above, and a' is its variance covariarice matrix of the smallest possible trace'(.

The three cases just described have been derived in conjunction with no

(iterion, with the minimum-norm criterion, and with the minimum trace

criterion, respectively. As has been suggested earlier, the minimum-trace

criterion is superior to the minimum norm criterion, and, by the same token, to

any other criteria. Even If some of them produced unique du' and a', the norm

of d' would not be a minimum, or the trace of a' would not be a minimum, or

h)oth, The auilytical formulation has revealed another advantage of the minimum-

tli' (riterion over ainy other,, namely that this criterion results In the

simplest expressions possible, represented by AL" 0.

The analysis of Chapter 5 can be extended to the approaches of Chapters 3

antd 4, divIoped with the aid of the matrix Q This goal is addressed in

('hiptir 6, whorte (95') presents Q in the general form

Q T(T") 1 (ifT AL"TL
* T

,

rht mat r 1 r H and Av" have been descr I bed above, the mat r ix L* of di mens ions

t i 1 zs i 'p by (57) as i., I R , and the mat r i cvs T and T" of

dlimPns loris (o ii ) are both arbitrary, subj-ect oily to the restrict ion that they

mllost he rig'ul I ar. Th(' geometrica i co struct io(n (f Q ensures t hat thi' rank

nditiol (,'i(41)) is satisfied. The properties of the resoI Ltion are deler'mined

V. b I. in to' mrinein r of thi' preii< din4 paragraph. Thus, for t.xamp)le,. tl'

miirilmu.m trace criterion corresponds to AL," O. This stipolat ion is equivalent

to AQ 0, r'pi 'so't i rg a spe(,ia) case of the rank conditioin (,39h)I). At ;i iii, t hi,

mat rix 0 with 'J," ( is the simplest of its k ind. It is lislally easy to

00( 1 a 1 inl pract.iriv fr'om the str-icture of Ill(- djus meont model, with )11 the ne ed

, 'iin i'xp i( i form-.i9,

-.e%
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rhe foregoing hias i Illustrated the theoretical benefits offered by the

and IlIYt alI for Iit lt i oi of Chapt er 5. However, this formulat ion holds also an

('"11l01li ra I edge over the other two . Ili part icul1a r, the anal y tical approach

(,1is for, anl inversion of' one matrix of' dimensions (uxu' ) In the computation of

i,* , and R. and one matrix of (dimensions l'u'xu") in the computation of H.

Since hoth matrices to be inverted are positive definite, the Choleski algorithm

is well suited for- this task. Although the matrix 1.' in it,,(-If couIld be

regar ded as non uiqu(4_e, Section 7.1 shows that suich a variability is

Inc'onse'quenial because the adjustment results for du' and a' contain only the

,vreof the product L** ,which is unique and known. By comparison, the

Is'of iiiemented observation equations in Chapter 3 requires an Inversion of the

pos II i ye def in ite mitti x a* of' dimeriq ions (uxu)t , where u1=11' 4u" . Finially, the

ti-t otf augment'i. normal equtitons In Chapter 4 requires an Inversion of a matrix

whose dimensions are [(u'u ) x (un" ( Another, drawback of this standard

proi-edure, is that the matrix to be inverted Is not positive definite.

A I I to ugh d iIit an d a itre i n gen Iera it1 n on t In i (IIte t the v ec t. or d x co nt a in in g

tite idjii-,ted (lIi near ized) observaitions and the var iance-covaritance matrix g' of

t htst- p(Iiit i t i es are un ique, expressed by

dx' Adur

T
.A it a' A

Ttusi restiIts, dler ivecl by geometrical means in Chapter 2, are applicable to each

bhe threev formulat ions of Chapters 3 5. Ini terms of Chapter 3, the same

I ye.f sem i ilef untf matrix g' i obt ained alIso ats g ' AaA T The pos it ive

wtm i uiefi i I Ief we ighlt matt r i aCssoc iat ed wi th (Ix' foll Iows f rom Ithe we ight

irp~ onl Itw tbifi ed in Chapter 2 as

ih r e-jr dI o0 aId Iiis ted I I i riuar i ztrd ) tu( I n s o f pa rame ter, t I h ptI teirn

j'.'1iuf elI auilln [.joc(t ion with lx' and g' appl ies in e-very respect , except

tit t(I x I i !(d A t r t t r iI but t the symbol T lI i s o i t ( onIe vj) erp s'vserut s in
- i' t. Iiii Va? ii'' ruir 110e pupaat onlaw known f rom ad tstmeuit calculis.

Mt WO Ili OlCt MaItr I I ' for, ,it( h ftid t I ts couild not tie ruomp)ited i r arnalogy to

lit( oliii- j,* i unknown . I 'fb new weight ptopagarit i or law app] ived to adjuist ed

.j a



observations could be useful if the latter, or their subset, should participate

in some capacity in another adjustment. The natural and nearly effortl(,ss

derivation of this law highlights pot,,ntial benefits of an isomorphic approach,

even though the disciplines being related may initially seem quite disparate.

Several other topics related to geometry with tensor structure have also

beeii addressed in this study. For example, Section 7.3 confirms that the matrix

'a in the minimum trace approach is the pseudoinverse of a*'. Upon substituting

A." 0 in L listed earlier, this pseudoinverse is expressed by

(a* ) [I 0 1T , HRT}r N l I 1 0 ] - RH

! Such an algorithm could be useful not only for Its clearcut geometrical

interpretation, but also for its computational elficlency. As has been already

i,,dicated, the pseudoinverse of a positive semi definite matrix of dimensions

(u'"~{I(u' u")] entails here only one inversion of a positive definite matrix

of dimensions (uxu') and one inversion of a positive definite matrix of

dimensions (u"xu"). Although two positive definite matrices of dimensions

(.-u') could be inverted instead, the above procedure is more advantageous when

u>u", which is by far the most prevalent situation in actual rank deficient

adjustments

A part of the theory developed in this study Is illustrated with the aid of

a simple example in Appendix 1 This example treats the general adjustment

res(iliit ion, te miniimurm norm peso lut ton and the minimum trace resolIut ion in

#,,wh of the three formulations presented In Chapters 3 5 Appendix 2 introduces

I ommut <t Ivi' diagram co responding to rable I in Chapter 2, which offers a

visual represen ntat lon of the opera.1 tons that can be performed and the relat ions

Sthat can tie iibta i ned via the tensor vers ion of adjustment quant it ies. Alt Iihut

t . tho' )mpu it iona I merits of the CholeskI algorithm are well documented. a

iomprebnr ; i v, veomet rica I iriterpretat Ion of' this a IgorI t hut has tbeen la(k i o_ [ci

till )hi I vi Appendix 3 interprets the Choleski algorithm for- the posit ivp

SIf't irI t , a,,  W .I 1 1-, t he lois i t i vi s 'm I dhef in it v mat r ic s i n t et . is (if im t tii ii i n, I

v#,i f or omporrent s Fina I Iy, Append I x 4 shows how thE tensor st ri-t i'. wh i )

. - has tte , I to (, irt 't( oir of t he prese'it st udy, c-ouI (I also bew usvfuI in* i ' t it mr 1cc ro' iiin teed tio ,idjiist merit c(alculus, such as t hie t i', - (ii rr, t i on of

M-il t I ic Tt e 't II
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APPENDIX I

NUMERICAL EXAMPLE

To illustrate the formulas and methods summarized in the last chapter, we

present i simple numerical example, where the dimensions are n=3, u=3, u'=2, and

o" l. Thus, the rank of the (3x3) matrix A is two and Its rank deficit Is one.

We begin by listing the quantities which are given, namely A (the design

matrix), g* (the weight matrix of observations), and dx (the vector of

linearized observat ions), followed by a few quantities computed from them and

considered fixed. Subsequently, we shall proceed with the resolution of du'

(the parametric corrections) and a' (their variance-covariance matrix) according

to tho three formulations analyzed in this study. The analytical formulation,

which is the most useful theoretically and computationally, will be treated

first. The universal-space formulation giving rise to augmented observation

oquaI ins will be treated second. And the minimal -constraint formulation giving

rie to augmented normal equations, which is the least advantageous of the

three. will be treated last.

The given quantities are

F,' 2 0 1 6

A - 4 3 1 g* diag.( 1/3. 1/6. 1/2) dx F
_lLO 1 1 2

i(h, normal equations are formed by means of a*' and du*', computed as

I F 4 2 d A4

g*A i 2 2 1 du* A g*dx I1

LO LJ

T
Hit. i . lvading submatrix of a*' is N 1,*', * T  which is positive de finite.• " 11

Furt her fixed qant it I es are computed as

2 1T ) I7
1  

-1,2)

o L

I% N 1  (],,2) R (3 2)

,..-. . .. .. . . ..

_ . .• . . . , . . o- - . - ,- -...-.. .= ~ = . .. - - - - .



,-."2 0 1- 2

L* I ij H (2/9) 21 HRr  (1/9)[2

The Choleski algorithm has given L* ' T and (L*'T 1 as upper-triangular.

A1.1 Analytical Formulation

The fundamental matrix L Is given by

[a"{[ O T T .,T -1 _ T T

1 01 T HRT (f* ) + (-R ]T AL"

1pon substituting the pertinent fixed quantities, this becomes

4-2]

L (1/9) 1 4] + (1/2) 2AL"

L1 5 2

General resolution. We now choose AL" at random as

Al." 2f 2 (A1. 1)

which leads to

13 201

_. 1 9) 17 40

-17 31

The remaining adjustment quantities of interest then follow as

r569 1021 -8411

-- [1. (1,81) 1021 1889 1529 (Al. 2a

L 41 1529 1250

46

i , do/9 (/9) 74 (AI 2b)

Tr (a' } 412/9 , du"F di' 1313/9

04
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dx' Adu = 3 g' =  Aa'AT I 5 1 (AI 3ab)
1 1 Ij

.The tidjusted observat ions dx' iind their variance covarionce matrix v' are

independent of AL", and thus of the resolution characteristics, as is verified

below.

'.Minimum norm resolution. In this case AL" must fulfill the following

partial restriction linked to the data through du*':

\lI,"1,*' I [I 01 RH T)du*' =  0

With the aid of the fixed quantities, this becomes

A"1[ 2 1 1T 0

One siich part i lIly rest i c ted choice is

AL (4,'9) [ 1 2] (A .1)

restiiting in

'2 6
1, 1(I<9 )1 5 12 1

i'w r em,i l ig adjustmeitlt quan tities are comput ed as

40 62 81 IF10 1

,a 181) 62 169 61 du (1,9)1 21 (A1.5a b)

L8 61 34, ~ L 7

Tr (a' I dl' du '  17, 9 m 11imum

Th) i type of a referred to earl ler as a data induced inverse of a* results

11 t he m 1 1imum nform sol )t I on ill' The' values of dx' and j' tr-' 'onfiiined to he,

t the same i those I n (AI 3ab), arid need not be listed again

M .-i i mum t , moe reso 10iton_ This case entails
.AI," ( Al .b)

-,@.1(1 tlt

S.-)



[4 -21
L (1/9)1 4

1 -5

Accordingly,

a (1/81)1 -4 17 191 du' r(I9) 2 (Al 7a,b)

14 19 26 7

Tr(a') = 7/9 minimum du Tdii 17.9 miinimum

Fh, vector d' in (AI .7b) represents the minimum norm solution, the same as its

(Quint (ijpirt in (Al 5b) , whi le the mattrix a' in (Al 7a) his t h, mill imum t ,T,(,

' The vilues of dx' and g are again Identical to those in (A) 3a,b)

Minimlil ,onstraint matrix This matrix, denoted here as Q, is not needed

i n the ana I y i ca I formulat i o), but is presented for the sake of the ot her t wo

I orml Iat ions Alt hough a matrix Q acceptable for the geneia I resol utin conI (

easily be found, and although such a matrix for the minimum trace resolution is

u'f ten suppl ie in jt pra('t i re, the s ituat ion wi th regard to the m iniimum nlorm

reso)lItnLon is more complex in that Q does not depend on A alone, but (ail be

ftormoo ()ly t ite r dx arid theroebv dtj*' have been eva uated The gener'a] formula
• p v Iying: I) readls

T 1') T Tl) 1 ( fT "I," T

,1th 'h i-u I ar'r hot I herwise arbi trary matrices T and T' have no effect on (ii'

".r'
.  , Ifl~d , HeeI(- tiey ir-e chosen as

""' I T' 2 9

In 'v,"if the ;am, ,'I, as preseriteid in (Al .1,4,6) we obtji n the f ol lowiu)'

matr , s 0) tot the three kinds of r'esolut ions:

ged'r iQ 117 7 201I

,-..-m mr huorm -. 4 . 61 . (.' 'II

tmln i mlm tr,'-' .. Q 1 2 2 1 ( 1A ) Ii)

. . . . .

. . . . . . . . .- - "-. . . . . .-. . .'a J." .A~



AI.2 Universal Space Formulation

General resolution. In augmenting the design matrix A by the minimal-

Sconstraint matrix Q from (AI.8), we create an augmented matrix of observation

-,uat ions I A Q whose rank is three as stipulated b the rank condition.

-. , As the weight matrix associated with Q, we choose k* 1. (This is consistent

ovth the above choice T-I but k* could be changed without affecting Q by

virtue ot the arbitrariness in T" ) The augmented observation equations in
4.

-" 1onuitiv n with the complete weight matrix diag. (g*,k*) yield

293 117 340,

a* 117 51 141

L 340 141 401j
I'.-.

l9710 71269 58729

I a*1 I 5643) 71269 131879 106799

L 58729 106799 87362

Iii using this matrix a in the expressions

a' ad* a, du' , adu*' a'du*' (A1l.la,b)

-hl ti n the restil t s Ident ical to (AI 2a b) in the anIalyt ica] formulation.

" im kIr ly. the rfsul ts for dx' and g' are identical to those listed in

I 3,1 In agreement with tihe relation

T F
p AaA Aa' A A1.12)

I' mi 1mtr ,l n it c)mt, (Al 'ib is confirmed alo Ias AaA T

Ml1tn iml Ir1i 1 If'wliit ion Here we augm.r0 t A by 0 from (Al 9). whic h aain

'11 ', il" t ~ i r 11k I'mid it i ()[ I pori using Ihe sam , k* and thus the same ('omplet e

w 'iit ht mlt rix iag (Vg *,k* , it fll,,wi that

29 ,41A) l 6.1 11)

* 2 l ,25 , i ( 1 81 ) , 173 65

It* :w If)-,(. [ l ,I illd' Illt )mllolld bv iA l 11.,i t ) Is ident it ,il to, (A l 5a .b ) III

i1 ,,. ho , I I I t, im, i, i i Im l a, I l dx ' tind v iIt(I ld q, I hr f ( I I "t Il r , I I \

, } S.t " , lEmf ,f fl) ti lIEti -, 1 I(, ij,'Ir lm i te rp.1r," Ii ( i 1 it

Wt"
-!6 JL P_ A



-./.

Minimum trace resolution In augmenting A by Q from (At 101 we have

AQ T_ as t speci l case of the rank condition. The above weights then yield(

5 0 2] 2 41

a* 0 6 3a (1/27) 2 7 -5

J

The outcome for a' and du' is now identicaI to (Al. 7a. b) and the out come for

dx' and g' is similarly identical to (Al.3a,b). It can thus be concluded that

in each k ind o resolution. the resu I ts for du' and a' agree perfect I y wit h

those found in the analytical formulation.

A1.3 Minimal-Constraint Formulation

General resolution. The solution of augmented normal equations with Q

given by (Al.8) is computed as

V-.' [4 2 0 17 4 569 1021 841 4

du' 2 2 -1 -7, -1021 1889 1529 18 1

dw*PJ 0 1 1 20 J -84 1 1529 1250 18L '
L-.L 1 7  --7 20 0] 0 -9 18 18 0 L 0

At this sttige, the (3x3) leading submatrix on the right hand side is confirmed

to b,, d' from (Al2a). In carrying out the indicated mult ipiicat ions, we obtain
_l.

f461'" r r l

"""".n -d ]74

(1-'9)
dw* 65

- .l ' ,' ,lx .n0 k -irt- ompuit d hy h for-mu las (Al , Ii f to U e 'ch yp,, f

I #'% } ll4 iriiim I l}. h ' no rm' 11. 11' }1 0]~ I I T() Jl(t ' N!( ,t ) ,i ()tlf

"

." ,aI. o ' i . W 'i ~ h IL (! 'I 1'

P .
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.4 -- -

du' -2
(1/9)'Ldw '] 7

0

In analogy to the preceding paragraph. a and du' are confirmed by (AI.5a,b),

and dw*-0 is again seen to be valid.

Minimum trace resolution. Finally, in using Q from (AI.O). in which

case it holds that AQ T=o. we compute

1 4 2 0 1 1 1 1 F420 -4 14 --9 4
.du i 2 2 1 21 1 4 17 -19 18

.dw* 0 1 1 2 1 14 -19 26 18 1

L 2 2 2 oj LO 9 18 18 0 o
.

(1 9)
dw* 7

fler. dw *  IN iagain fulfilled, while a' and du' agree with (A1.7ab). We notice

that the matrix to be inverted above, although regular, is not positive

dfef Ill te . in part ictilar, !s leading submatrix of dimensionq (3x 3) is posit ive

se#mi oleflnite, which woulid cause the regular Choleski algorithm to break down

d11 Ill o livision by zer() at the level of the element (3.4).

This ,i'ludes the comparisons and verifications intended to illustrate the

(uIsIStvrli y among the three formulat ions, as well as their theoret ical and

,> ())ml I i ri ink ng Ihi- lnvers tens we have wit nessed implicate the fol lowing

mtt i fl "W, ) Isit ite d 'lehiite I symmetI c) mat ri(evs of dimlisio.ns ( 2)

ini d I 11 iTi ttie, i ,i I Vt i'-, I formtulationi -  (b) One p ositive definite isymmetric )

ma r t I , t ,, I I mei, i,,i n s f . i1, It the, un iversaI spi ne formIliaI inn, aild Oi) (ine

Nv YM' rm If I I t x f Ali e iii i4 l i s ( 4 - 1 revular but I tot poq it ive def IIti e, in the

miimal Irt rn nit trhi()I lm11);A t Ioil As a mat ter ,f tipt, 't t-,I the .,m ad -tmi t

.. , t I I N i fd h'l I ' iet , en f (iii nd I tlI hf, tl i l vo r ,,i .spaei, and the

mintmli (onstrii it f(limitia t i ns with diffferent va lue- , (if il d T ifffe( t ]nr

'ill , n t Ii i Irl i Finlal ly. the Ilt (,Mt . f t tx ;111(1 an ' IN ( )lif rmI dcd to he

if . . , u', ,lit, I w ith rt'- ard I,. I and l t a'O N(, to, I

'4

."
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APPENDIX 2

*, COMMUTATIVE DIAGRAM

The tensors defined in Table 1, Including the covariant forms of the first

two groups, have provided the necessary tensor relations utilized in this study.

All of these relations, as well as many others that can be derived with the aid

of Table 1, are summarized visually via the commutative diagram of Fig. 2. To a

-ertain extent, tnis diagram resembles the right-hand side of the diagram

presttited iii Fig. 2 of [11. The main (ifferences stem from the fact that the

hoyts" representing the vector components du and du have now been subdivided

into two pirts each, and that the extreme right-hand portion of the diagram

Aencompassing the components dw and dw has been added.

'Just as l'able 1, the diagram of Fig. 2 shows the partition of the

underlviing ,niiversal space into three surfaces combined in two spaces. The

description ot the diagram can be made in a close analogy to the specifications

f ()und in ( H. In particular, the, vector components (marked in boxes) symboli ze

at the same time the spaces (i" surfaces in which these vectors exist. Thus, in

bt h thi' vm travariant :tnd the covariant versions, the boxes representing dx'

aind dx" should he imagined as completely filling the box representing dx. A

i mi I ;i atement can be made also with regard to the boxes representii du'

di '. ind ( di. The second order tensors acting as linear transformation operators

,it' ('siv.na t,'d hy Irro,; 'Fith 'av let lines Identify the quantities whinch, in

h,- ()rrtelpconding I,. setup, are considered known a priori.

The desc'ription of the diagram's functioning could he adopted from 1111 as

well The arr()ws with dots can again be used in two ways. i.e., the dots can

,i heri to'- ron ni red as an ite'ral part. of the arrow, or can be disregarded.

And when expressing one quantity in terms of some other(s), we again start at

the difs ired boy or at the tip of the desired at row and proceed against the

re t o o f" fhio ' r'mw( ,JaIonif a ohose n ( p qss fb h y even repe t i ve ) pal h. not lgn

)I' I('r T I do r t o')1,i ( ('1'oill t e red o r I lig t hi s pro ess. Th r' I at ionl is

mp II el ' i wh t, it a 4' 1']ctel ) ox or t -h base of a slo Iectfd al row is re.l(hed

-(il it i-, ', i t, i fpT 'i,,f' t . mp ' ippl I('a ions f th(-si' two rnu 's.

0o , . , .. • ''.. ... "



r th inter S ur'Face (ont rct ion s (dur i ng wh ich one of the two verti cal dashed
r aI ino's is crossed) resii t again In a zero tensor, such as in A du" =O. The

foui i r vi t i l arrows , a and a are not part of such contracti ois~ ~ ~ ~ ~ 9r aou Oa'i:llarw . g

since they are associated with the surfaces on either side of the dashed lines.

FinaI ly. various contractions among the first- and second-order primed tensors

can a ain be added algebr,,ically to their" doubly primed counterparts, the result

t)cni the corresponding unprimed tensor. A simple example of this kind is
r r r' dx'r (I * dx gsdXr , where the g' and g"-arrows could be replaced by the

sr sr, sr
JT ' arrows, More detail as well as examples illustrating the above rules can be

P-O touiid in (B I

0 "
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APPENDIX 3

GEOMETRICAL INTERPRETATION OF THE CHOLESKI ALGORITHM

A3.1 Full-Rank Case

In the geometrical interpretation of the full-rank adjustment, such as

described in [B], no individual components of the orthonormal vectors are known,

but certain combinations of such components are given as a part of the L.S.
r rs

setup. These combinations correspond to the tensors dx , g and thus g sr' and
r

A at the point P. presented as
L

dxr ar + bJ r *+q +...

rs r s r s rsg + Jj t.. + V I. +...

g =Q + J j + .. 4-.i ' -+....

gsr s r sir s r

r r r
A k + J +

L L +

Except for the index L, the above notations are the same as those utilized in

II]l. The u' dimensional model surface Is endowed with the coordinate system

symbolized here by (u '), L=I,2 .... u' This deviation from the notations in [B)

should present no difficulty.

In the full rank setup, the components of the orthonormal vectors are used

as geometrical tools in formulating tensor equations. In this role they take

part in operat.ons that leave no room for completely arbitrary components, as

contrasted to the rank--deficient setup where entire sets of such components can

he chosen arbitrarily without conflicting the a priori information. For
s r

example, the metric tensor of the model surface, formed as a =A A is

Pxpressible through the covariant components of the model surface orthonormal

vectors k. j Such a relationship allows one to compute a family of sets of

these components, each set reconfirming the correct tensor aMl corresponding to

the matrix i* of normal equations, but no set allowing any of its components to

he chauged arbitrat ily. The set which is the most useful for the subsequent

inversion of a* would be a natural choice In the numerical resolution of the

adjustment problem. Clearly, the inversion of a* can also proceed by purely

,lghebrai" means, where the computation of the individual components of Q. j.

is typassed.

78
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Alt hough no iumer I cal aspects were considered in [B] it is instruct i ve to

show how the covariant components of the model-surface orthonormal vectors could

be determined in the full-rank adjustment. This will help bring into focus the

ambiguity associated with the orthonormal vectors of the parametric space in the

rank- deficient adjustment. The pertinent tensor relation and its matrix

formulation read

ML ML ML

,* a* L [[k. , (A3.la,b)

where L* is regular and a* is positive definite, both matrices having the

dimensions (uxt'). Since a* is symmetric, the u'xu' elements of 1* are

determined from the u'(u l )/2 independent elements of a*. This means that

u'(u' -1)/2 indeterminable elements of L* are chosen beforehand, with the help of

which the other W'(u'4l)/2 elements can be computed. For any such choice there

exists a matrix L* fulfilling (A3.1a). All possible choices give rise to a

$ " family of matrices L* and, accordingly, to a family of sets QM, J But

- once a set is computed, no components can be changed independently of the others

without contradict ing the fixed values in a*.

The greatest number of elements that can be chosen in any column of L* is

u-1, otherwise the corresponding diagonal entry in a* would not in general be

accommodated by (A3. a). Assuming there is one column in L* numbered i with

W-1 chosen elements, we observe that no other column can have u'-1 chosen

elements. (If, for example, a column numbered j broke this rule, the ij th

entry of a* would not in general be accommodated.) The next greatest number of

chosen elements in any column Is ni'-2, I.e. , there are two computed elements.

If this co I imo Is nmbered J. one computed element accommodates the jj th

(d iagona I ) entry of' a* and the W hiher accommodates the ij - th entry. Again, only

one column in L* (:an hay, W 2 chosen elements. The next greatest number of

chosen elements in any -oltimn is ,1' 3, etc., until one of the remaining two

col umns (cai oi I v havw. one (,hoser; e enent and the' other cannot have any.

in keeping with the max.imm rimber of chosen elements in each Instance, we

observe that t heret are i' , u' 2, u' 3 ..... , arid 0 chosen elements

encompassinrg gradi, illy the W columns of the matrix L* . The order of these

coluimns as wel I .; the order o.f the, chosen elements in their respective columns

are arhitrar-v tkl oi ro thef 'Im in this "maximum" sequence equals 1( I' ) 2,

-7
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there cannot be fewer chosen elements In L* T either. The above sequence thus

represents the exact number of chosen elements. It Is now convenient to adopt

the following three-pronged strategy for the formation of the matrix L*T

- * 1) Assign zero values to all chosen elements; 2) Arrange the columns according

*. to the descending number of the assigned zeros (the first column has u'-i of

them, the second column has u' 2, etc.); and 3) Place these zeros strictly in

the bottom portion of each column. The thus constructed matrix L*T is upper-

triangular, and (A3.1a) reflects the standard Choleski algorithm.

Accordingly, the matrix L* is lower-triangular, which means that no

component of [9M is assigned zero value, the first component of [j is

assigned zero value, the first two covarlant components of the next orthonormal

vector are assigned zero values, etc. This is how far we need to go toward the

L
determination of the coordinate system (u }, L 1,2_.. u'. It is clear from the

foregoing that such a coordinate system is compatible with the known metric

tensor a
ML

With regard to the associated metric tensor of the model surface, we have

LM 9L 9M L Ma =2 +J **...*

T I1 La LL T , L - [[ Ilj I ... I (A3.2a,b)

Due to the orthonormality of the model-surface vectors k, j.....it holds:

T T-1
L* T, : I L (1,* )(A3.3ab)

By virtue of (A3.3b), equations (A3.la) and (A3.2a) confirm that

"ft'. -1
a = (a*)

Since the matrix L*T is upper triangular, so must be L. This means that the

Lsecond through the last components of [2 L are zeros, the third through the

last components of j are zeros, etc. Consequently, L and thus also the

-matrix a can be computed more efficiently than would be the case If one inverted

a* by other methods, ignoring its positive definite structure.

The foregoing development has illustrated the geometrical meaning of the

(holeski algorithm insofar as the covariant components of the model-surface

60" orthonormal vectors are concerned. Although coordinates need not have been

merit ioned, linking coordinate systems to the above procedure offers further
k-*.,.W
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geometrical Insight, and can even prove beneficial in solving unrelated problems

as will be exemp I i fied in Appendix 4. In order to address such tasks. we make

use not only of the Implied model surface coordinates ju , L-l,2.. but

introduce another set of model surface coordinates. The new model surface

coordinates are symbolized by Jv } 1- 1,2 u' , and are Intended to describe

the model surface at and around the point P. As a crucial step, they are

st ipulated to be Cartesian, belonging to the Cartesian system cal led "local".

The latter is defined as centered at P, with the axes directed along the model

surface orth01rmal vectors Q, .j ..

We now postulate a very special confIguration of tho u coordinate lines

with respect to the v coordinate lines (Cartesian axes), which we shall call

"canonical" First, the tangent to the u coordinate line is postulated to

coincide with the v coordinate line, i.e., a straight line along Q . This

2 -3 4 u
means that the v v , v ..... v coordinates, i.e., the Cartesian

coordinates along directions orthogonal to this tangent, are unaffected by

differential changes in the u 1 coordinate. Second, the tangents to the u and

2 -1 2
. C coordinate lines are postulated to span the same plane as the v and v

coordinate lines, i.e., straight lines along 9 and J, respectively. Therefore,
-3 -4 -u

the v , v ..... v coordinates, i.e., the Cartesian coordinates along

directions orthogonal to this plane, are unaffected by differential changes in

the,1 2 1 2 3
-t 1u and u coordinates. Next, the tangents to the u . u , and u coordinate

lines are postulated to span the same (three dimensional) hyperplane as the
]1 2 3 4 u'i

v , v an d v coordinate lines. Consequently, the v .... v coordinates

1 2 3
are unaffected by differential changes In the u , u , and u coordinates.

,1 2
Continuing in this mariner, we finally postulate that the tangents to the u , u

3 u 1
-....... u coordinate lines sparn the same (u' I dimensional) hyperplarc as

1 2 3 -u' - U I'

1 the v , 2v 3 ..... coordiinate lines. Thus the v coordinate

(the (artes ian coordinate along the direction orthofgonal to this hyperplane) is
•.-'1 2 3 u' 1

S...-. unaffected by differential changes in the u 1 1 ..... 1 coordinates

and is affpcted only by changes in the uu coordinate.

, %

5;*



1I in retracing the steps in the above description, we deduce that

2 2 2 3 21

0 3v0 2v/ciu 2  dv 2 /du 3  dV2C3uW

"a. M 3 3 -3 u
JU 5V 3 0 0 av/Jau . av./au. '

I 0 0 0 U
L

(A3.4)

which is associated with the point P and reflects the canonical configuration

there. (As a matter of interest, a result of a similar form would be obtained
L

for the canonical configuration of the u coordinate lines with respect to the
L

v coordinate lines even if the latter were not Cartesian.) Since the only

role of the indices L and M above is to indicate the dimensionality of the rows

and columns, respectively, such indices can be left out from this and similar
L.T

expressions. Just as L* dealt with earlier, the (u'xu') matrix in (A3.4) is

upper triangular. In fact. in the next step we demonstrate that these two

upper triangular matrices are identical.

The tensor transformation law applied to the model--surface orthonormal

vectors reads

S MM
k" 'M " /J )e (av au )js

2 -Since k, ... are unit vectors in the directions of the local Cartesian axes,

we haw,

Si S T -s Tfe-i [ S) [9S 1 0 0 ... [is] I Dj] = [ 0 0 ...

Accordingly, It follows that

,1Q MIJM ... j - av MT [av/auIT

" e' Since the matrix on the left-hand side Is L*, It Is indeed proven that

/ - , T  (A3.5)
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4This result ,hows that by choosi rig the ii(-i' i 1)2 indeterminable elements

in L* as z/tros according to the C(holeski algorithm, one has effect ively chosen

the canonical configuration of (he icoordinate li nes u with respect to the local

Cartesian axos lirected along the vectors Q J, .. If these u'(U' 1)/2

el. tements we t' Uhsen if any other way, the coordinate lilies ui would have a

V feneraI coofitrrr t ion with respect !i , J ... Clearly, equat ion (A3 .5)

rema iis va I id it, mtt ter the choice of the indeterminable e ements w i ch only

T
affects the composition of L* and with it the aspect of the Implied coordinate

sys temn {(u The rev is anl tI fini te number of such cho i ces cornpat I tilie with t hit
T

matrix a*. But just as the Choleski choice for L* is simple and appealing,

ntmeri ctl ly, the ,')rr'espondting ('itnonical property reIat ing the direct ions of t he
I

U I) lIto, I i[I Is t t he model surface orthonorma I vect ors is s imp e v and

' appe I l Ig gfeome t r' I (-,I y

We- now pi fs'iit t he formu I a (A3 I a) from a different angle , based oil the

outcome (ARi The tensor transformation law applied to the model surface

mie t t, it I '0(1 reais

S3 M R, 1,
' ML ( v u  

aviu SR

Since the crditnates {v art, Cartesian, aSR in matrix notations is I (the

unit matrix), and the above tensor equation In matrix notations becomes

which k (A" I ,, ( IcIpated

fut- to (A ) h) it conjunctio with (A3.5), we can also write

I 11v [011 [n ;' (A3.6)

which Iz ali,,!1[ ilpcor triJangular as has been noted earlier. We (,an now confirm

(AV 21f (?m t h, t .nsor trans format for law app lied to the model surface

.a55t) fated, m,'rmi, t lrf

-~ tM i

RS
Avga ri ' I v r *Ur('S't5 (it' 1 te al Uart es Ian coordi iate system, a

matrix not.o ,l'4 i and the abovo tensor equa ion i n ma trix noIit t ions becomes

'j1 1 IV. t1 v

p>,, , , , . , . -. . . . . - .. . , . . . .. . .- ... .. ... H . .



But in considering (A3.6), this Is seen to be (A3.2a). We have thus reviewed

the Choleski algorithm, from the decomposition of a* into triangular matrices to

the inverse solution for a. and shown at every step what it entails in the

geometrical language, both in terms of the components of the modelsurface

orthonormal vectors and in terms of the implied coordinate system (u L.

A3.2 Rank-Deficient Case

Similar to the previous section, the known combinations of the orthonormal
r rs

vect or components representing the rank-deficient L.S. setup are dx r , g and

thus g and Ar These notations have been used throughout the body of the

present study. As has been Indicated e.g. in Section 3.1, the necessary metric

tensor a a corresponds to a*', the known positive semi-definite matrix of

normal equations of dimensions (uxu) and rank u'. The tensor and matrix

formulations of this entity are

a'a Q CtQ + jOJa +

a*' [L [[lj] .L

where the dimensions of L* are (Oiu'). At this Juncture, the notations and

relations formulated in Section 5.1, especially equations (52a)-(59). can be

adopted as they stand.

The metric tensor of the parametric space, a P, is unavailable from the

L.S. setup. But it is instructive to express It in theory, including the

corresponding matrix relations:

aC + .. + t 0t +

T
a* [L* T*I(L* T*I (A3.7)

where T* is transcribed from (52c) as T*(tB . We can now imagine,

alongside the implied parametric space ccordinate system (u }, a l,2.

a local Cartesian system (u a), a-1.2_.. u, whose axes point in the directions

of the, parametric-space orthonormal vectors e, j ..... .... In analogy to

the derivation that has led to (A3.5), we obtain

[[I Ili I ... It ] .. l 
I  T  0 / U T
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iiAd t is

I u t . S(A3 .8)l u u l Il* T* IT M .8

Although the known a*' allows us to determine L* by (57), T* and thus a*

ire unknown Accordingly. we have only the first u' rows of fau/au] in
(,3.8).S, equtling L5 y -[L5T l," T where the submatrix I,* ' is upper t.ian*ulor

by virtue of the Choleski choice. In assuming that the first u coordinates of

the system (u . a 1,2 ..... it represent a set of implied model surface

coordinates, we deduce from the full-rank analysis that the first u' of the
u . a 1 .. u coordinate lines have a canon ical configuration with respect

to B .. But since In general T*' To and T*"T supper triangular matrix,

where '*: [T* 'T T "T], the complete matrix of partial derivatives in (A3.8) is

rnot upper triangular. Therefore, on the whole the configuration of the u

coordi nate lines with respect to the local Cartesian system in the rank

def icient case is not canonical.

The above assertion concerning T* can be elaborated as follows. From (79)

or (80) it transpires that the matrix T* correspoading to the minimum trace
%T*-l

solut ion has the form H(T" T ) I-, where H Is given by (76) and T" is arbitrary but

regular. It thus follows that

T * '  (T ) (I * R R) R

where R depends on the matrix of normal equations a*' and is given hy (58) as
I T. N N A( (co'dii Iy , T* -0 could hold only if R-O, which., in turn. would

4trequire thit N - W Since InI general such a restrictiot does not apply, the,
12

ai,,,,v,4above corn:i l ion regarding the non canoni cal conf igurat ion of the u coord i nate

Slines is confirmed, as least insofar as the most desirable resolution of the

rank deffi i nt model is concerned

The' quantity of crucia I importance in the rank deficient adjustment is the

necessary issociated metric tensor a corresponding to the variance

-ovar iaipe matrix ot the adlsted parameters. We now have

, ,a

.a".

where I. as iver I t ,2) 1 s1 I 5 ) j . t wever. 1, cannot be computed

[ ' 4'
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from I'* in analogy to (A3 3h). due to a more complex relation expressed by
(55) Since L* is known, the entire outcome hinges on the choice of the "free"

mat r ix T*. Once T* is chosen under the necess,,ry assumption that [I,* T* is

regular, a* can be computed by (A3 7) and a ca(. be computed as (a*) . The

matrices L and T then follow as L~al.* and T-aT =

ie (ilt ravar i ant component s of all t he paramle t r i c' space ort honorma I

vectors are thus seen to depend on the choice of the covariant components of

t . Each such choice is instrumental in determining the numerical values of

. the solution vector du' and its variance covariance matrix a'. Conversely, by

stipuilatinog certain des i rable properties for du', a'. or both, one can find what

it entails in terms of the covarlant components of t, ... grouped In the matrix

T*. As is recapitllate(i in the Summary and Conclusions, the basic resolution

. Jproperties can be expressed through the u"xu' free elements grouped in the

matrix the values of T*, if desired, can then be found from (64) and (69)

in Section 5.2.
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APPENDIX 4

TRANSFORMATION OF MULTIPLE INTEGRALS IN ANY DIMENSIONS

In this appendix we seek to Illustrate how the canonical configuration

encu11teret'd i11 tht. full rank case of Appendix 3 could be useful in problems

Unre!,Ited t o th, present study and. indeed, to any L.S adjustment. For t he

sake ot an easy vi suaIl izat ion without the aid of figures or diagrams, we proceed

via a three dimensional example. However, due to the nature of the coordinate

systems in(v.d this example (an be effortlessly extei(led to any dimensions.

'r (.,If he, !o&i!, !- twl dlimellsilons. 'he notations adopted here are those of

i n' t'i r ir , ' n .if 'jlf'ndix 3. I.e.. the local Cartesial (lord irate's are

* symi ), I ized by j v alnd the implield coordinates, now cal led curvilinear, are

- symbol i -!d by (u In the three dimensional application the indices range as

Wt tbeg I;. tv ,nstruct ing a differential parallelepiped whose edges follow
1 2 3the ,irc tonN (if the n u , and u coordinate lines at the point P described

1 2 3 1
Sy the corvi Iinear ,'ordinates (u ,u ,u . First, we envision the u coordinate

2 3
line through I', ilong which the coordinates u and u are constanit. Within a

. short dist.ance from P. a segmsnt of this line is straight. We also envision
1 2 2 3

. another 0i ('o(uridti lie. along which the coordinates (u d ) and u are
2

ons tnt )iie to the small difference in the u 2coordinate, the second line is

* close to the tt ani ,t within a small neighborhood of P the two straight line

* Igmtt o 1k, , i 1  In the same fashion, we envision parallel straight lint-

segments of two ti coordinate lines, the first characterized by constant u and
A1 1 3

f ii coo di ri *t-, :rid the, sec{on( i chatracterized by constant (it ,do 1 ) and u

coordinate We- are now ifi the presence of a differential parallelogram

asso( iated with the vectors do and db emanating from P, da beine the straight

.* line seom, o I a ong the f irst u Ioordinate line and db being the straight line
2

* segment ailong thf f I r t o coordinate line (there is no need to use additional

notations for the other two straight line segments completing the

parallelogram) Fitr oeeding in a imilar manner, we complete the different ial

paralI Ilepip d as,'iated with the vectors da. db, and dc emanating from P.

.- These thre' vectors form the parallelepiped's edges at P and follow the
1 2 3

direct ions of the i ,I n and 11 3coordinate ine's, respectively.

Aq7
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L
In the curvilinear coordinate system (u the contravariant components of

L 11 L
the three differential vectors da. db. and dc are denoted as da db and dc

while in the local cartesian system (v L, these components are da L=da db L=db L '
L,:.-{ and dc dc- The local C:artesian system, centered at P. is defined in such a

L" L -L
way that the mutual configuration of the u and the v coordinate lines is

canonical Consistent with an earlier description, this means that the v
~1

Cartsiain axis coincides with the tangent to the u coordinate line at P (i.e.,
3 1

."7. the v, and v coordinates are unaffected by differential changes in the u
-"- -1 2

coordinate) and the v and v Cartesian axes span the same plane as the

Nangents to the u and u coordinate lines at this point (I.e., the coordinate
:I1 1 2V is unaffected by differential changes in the u and u coordinates.

If desired, the above definition could be readily extended to four and
4

higher dimensions by adding v , . behind v within the two parenthetic

statements ini tht, preceding paragraph, and by continuing in the same manner,
1 -2 3

, stipulating that the v , v , and v Cartesian axes span the same

1 2 3hvperplane as the tangents to the u u and u coordinate lines (the
4 1 2 3i oord inates v ,.. are unaffected by differential changes in the u , u , and u

c)Ordinatesi. etc. The differential parallelepiped would then be extended to

.higher dimensions as well. In particular, its edges at P would be formed by the
.ifferetia.l vectors da, db, dc, dd, ... following the directions of the u , u

f u coordinate lines.

In the general Cartesian coordinates (vL}, i.e.. not only in the local

( artesian coordinates (v , the projection of da on the first Cartesian axis is
2

-t.- -. I da]. th(, project ion of db on the second Cartesian axis is db =db and the
1 3projection of dc on the third Cartesian axis is c However, the advantage

ot the lo(al Cartesian system becomes apparent upon the realization that the

I -2
absolute value of the productda db equals the surface of the parallelogram

associatcd with the vectors da and db, and the absolute value of the product
1 2 3

da db d (,. equals the volume (dV) of the parallelepiped under consideration,

issociatpd with the vectors da. db, and dc. In continuing the same process

without the need for abstract generalizations other than the straightforward

extension of 'volume- to higher dimensions (it equals the "area" in a given
-hyperplane times the "height" orthogonal to it), one obtains the formula giving

the volume of a parallelepiped in higher dimensions as the absolute value of

1 2 3 '1

(1,1 (lb dc d

880-4:-
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Since the tensor transformation law specifies that

da' ( LL au M)da M dbL (av L/au M)dbM
, dc (av/ au M)dcM

and since, by construction, the contravariant components of da, db, and dc in

curvilinear coordinates are

NI I T N2 T M3IT
[da - {du 0 0]T , [db M ] E [0 du 0], [dc I- [0 0 dualj

it follows that

da (av /au1 )du , db2 = (av2/au2 )du , dc3 = (av/au3 )du3

Accordingly, the volume element at P becomes

dV = Jdaldbdc3 = (avl/au (av 2/au 2 ) (av 3/au3 )du du 2du 3 (A4.1)

where du are considered positive. A completely analogous formula is readily

available in higher dimensions (or in two dimensions).

Upon consulting equation (A3.4) reflecting the present canonical

configuration, we transcribe (A4.l) as

dV !Det[av/aujidu du 2du3  (A4. 2a)

where "Det" stands for "dete--minant". Furthermore, due to

- T
a* [aviou]T fv/aul

listed prior to (A3.6), we have

2
Det (a*) - (Det [av/au]

where a* is the matrix notation for the metric tensor at P characterizing the

curvilinpar coordinate system (u This allows (A4.2a) to be written also i

dV [Det(a*)] du du du3 A -

Just as (A4.1). the formulas (A4.2a,b) are readily adaptable to arv di '

The foregoing development leads directly to 'hr formula U'n ir f,

of multiple integrals from rectangular to curvilinear (.oordio a',.

Cartesian coordinates for a given region In space arf li: dV'<'

the curvilinear coordinates are still symhol .:od hy I ,

.P 4
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(A4.2b) is valid as it stands because it involves exclusively the curvilinear

coordinates. But the above relations giving a* and Det(a) also remain valid

L -L
with (v } replacing (v ) because the only property used in conjunction with

these systems has been their Cartesian nature. Accordingly, the formula (A4.2a)
L -L '

likewise remains valid with (v ) replacing {v ). This deduction makes one

appreciate the fact that although (A4.2a) was derived with an upper-triangular

Jacobian matrix [av/au], it now holds with a general Jacobian matrix [av/au].

The equivalent relations (A4.2a,b) can thus be written in conjunction with

a general Cartesian system (v L ) as

dV = IDet[av/auiIdu du2 du = (Det(a*)]l/2 du du2du3  (A4.3)

This formula results in the following transformation of triple integrals:

ff(vL )dV If(vL)dvdv2dv3 = Jf[F(uL )][Det(a*)]1/(duldu du3 , (A4.4)
V V U

where the relations v L=F(u L ) or u L=F- (v L), L=1.2,3, describe the transformation

* of coordinates which maps the region V into U. Consistent with the philosophy

maintained throughout this appendix, equation (A4.4) is applicable also to the

transformation of double as well as multiple integrals in any dimensions.

4.9

4.
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